scholarly journals On the power domination number of the Cartesian product of graphs

2019 ◽  
Vol 16 (3) ◽  
pp. 253-257
Author(s):  
K.M. Koh ◽  
K.W. Soh
10.37236/2535 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
K. Choudhary ◽  
S. Margulies ◽  
I. V. Hicks

A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in G. Vizing's conjecture from 1968 states that for the Cartesian product of graphs $G$ and $H$, $\gamma(G)\gamma(H) \leq \gamma(G \Box H)$, and Clark and Suen (2000) proved that $\gamma(G)\gamma(H) \leq 2 \gamma(G \Box H)$. In this paper, we modify the approach of Clark and Suen to prove a variety of similar bounds related to total and paired domination, and also extend these bounds to the $n$-Cartesian product of graphs $A^1$ through $A^n$.


10.37236/1542 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
W. Edwin Clark ◽  
Stephen Suen

Let $\gamma(G)$ denote the domination number of a graph $G$ and let $G\square H$ denote the Cartesian product of graphs $G$ and $H$. We prove that $\gamma(G)\gamma(H) \le 2 \gamma(G\square H)$ for all simple graphs $G$ and $H$.


2020 ◽  
Vol 13 (4) ◽  
pp. 779-793
Author(s):  
Marivir Ortega ◽  
Rowena Isla

In this paper, we introduce and investigate the concepts of semitotal k-fair domination and independent k-fair domination, where k is a positive integer. We also characterize the semitotal 1-fair dominating sets and independent k-fair dominating sets in the join, corona, lexicographic product, and Cartesian product of graphs and determine the exact value or sharp bounds of the corresponding semitotal 1-fair domination number and independent k-fair domination number.


1992 ◽  
Vol 16 (4) ◽  
pp. 297-303
Author(s):  
Elefterie Olaru ◽  
Eugen M??ndrescu

2014 ◽  
Vol 06 (01) ◽  
pp. 1450001 ◽  
Author(s):  
M. R. CHITHRA ◽  
A. VIJAYAKUMAR

The diameter of a graph can be affected by the addition or deletion of edges. In this paper, we examine the Cartesian product of graphs whose diameter increases (decreases) by the deletion (addition) of a single edge. The problems of minimality and maximality of the Cartesian product of graphs with respect to its diameter are also solved. These problems are motivated by the fact that most of the interconnection networks are graph products and a good network must be hard to disrupt and the transmissions must remain connected even if some vertices or edges fail.


Sign in / Sign up

Export Citation Format

Share Document