scholarly journals On Semitotal k-Fair and Independent k-Fair Domination in Graphs

2020 ◽  
Vol 13 (4) ◽  
pp. 779-793
Author(s):  
Marivir Ortega ◽  
Rowena Isla

In this paper, we introduce and investigate the concepts of semitotal k-fair domination and independent k-fair domination, where k is a positive integer. We also characterize the semitotal 1-fair dominating sets and independent k-fair dominating sets in the join, corona, lexicographic product, and Cartesian product of graphs and determine the exact value or sharp bounds of the corresponding semitotal 1-fair domination number and independent k-fair domination number.

2021 ◽  
Vol 14 (3) ◽  
pp. 829-841
Author(s):  
Gerald Bacon Monsanto ◽  
Helen M. Rara

Let G be a connected graph. Brigham et al. [3] defined a resolving dominating setas a set S of vertices of a connected graph G that is both resolving and dominating. A set S ⊆ V (G) is a resolving restrained dominating set of G if S is a resolving dominating set of G and S = V (G) or hV (G) \ Si has no isolated vertex. In this paper, we characterize the resolving restrained dominating sets in the join, corona and lexicographic product of graphs and determine the resolving restrained domination number of these graphs.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850075
Author(s):  
Yamilita M. Pabilona ◽  
Helen M. Rara

Let [Formula: see text] be a simple graph. A hop dominating set [Formula: see text] is called a connected hop dominating set of [Formula: see text] if the induced subgraph [Formula: see text] of [Formula: see text] is connected. The smallest cardinality of a connected hop dominating set of [Formula: see text], denoted by [Formula: see text], is called the connected hop domination number of [Formula: see text]. In this paper, we characterize the connected hop dominating sets in the join, corona and lexicographic product of graphs and determine the corresponding connected hop domination number of these graphs. The study of these concepts is motivated with a social network application.


2021 ◽  
Vol 14 (2) ◽  
pp. 578-589
Author(s):  
Wardah Masanggila Bent-Usman ◽  
Rowena T. Isla

Let G = (V (G), E(G)) be a simple non-empty graph. For an integer k ≥ 1, a k-fairtotal dominating set (kf td-set) is a total dominating set S ⊆ V (G) such that |NG(u) ∩ S| = k for every u ∈ V (G)\S. The k-fair total domination number of G, denoted by γkf td(G), is the minimum cardinality of a kf td-set. A k-fair total dominating set of cardinality γkf td(G) is called a minimum k-fair total dominating set or a γkf td-set. We investigate the notion of k-fair total domination in this paper. We also characterize the k-fair total dominating sets in the join, corona, lexicographic product and Cartesian product of graphs and determine the exact values or sharpbounds of their corresponding k-fair total domination number.


2021 ◽  
Vol 14 (3) ◽  
pp. 803-815
Author(s):  
Raicah Cayongcat Rakim ◽  
Helen M Rara

Let G = (V (G), E(G)) be a simple graph. A set S ⊆ V (G) is a perfect hop dominating set of G if for every v ∈ V (G) \ S, there is exactly one vertex u ∈ S such that dG(u, v) = 2. The smallest cardinality of a perfect hop dominating set of G is called the perfect hop domination number of G, denoted by γph(G). A perfect hop dominating set S ⊆ V (G) is called a total perfect hop dominating set of G if for every v ∈ V (G), there is exactly one vertex u ∈ S such that dG(u, v) = 2. The total perfect hop domination number of G, denoted by γtph(G), is the smallest cardinality of a total perfect hop dominating set of G. Any total perfect hop dominating set of G of cardinality γtph(G) is referred to as a γtph-set of G. In this paper, we characterize the total perfect hop dominating sets in the join, corona and lexicographic product of graphs and determine their corresponding total perfect hop domination number.


10.37236/2535 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
K. Choudhary ◽  
S. Margulies ◽  
I. V. Hicks

A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in G. Vizing's conjecture from 1968 states that for the Cartesian product of graphs $G$ and $H$, $\gamma(G)\gamma(H) \leq \gamma(G \Box H)$, and Clark and Suen (2000) proved that $\gamma(G)\gamma(H) \leq 2 \gamma(G \Box H)$. In this paper, we modify the approach of Clark and Suen to prove a variety of similar bounds related to total and paired domination, and also extend these bounds to the $n$-Cartesian product of graphs $A^1$ through $A^n$.


10.37236/1542 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
W. Edwin Clark ◽  
Stephen Suen

Let $\gamma(G)$ denote the domination number of a graph $G$ and let $G\square H$ denote the Cartesian product of graphs $G$ and $H$. We prove that $\gamma(G)\gamma(H) \le 2 \gamma(G\square H)$ for all simple graphs $G$ and $H$.


2021 ◽  
Vol 14 (3) ◽  
pp. 1015-1023
Author(s):  
Jerson Saguin Mohamad ◽  
Helen M. Rara

A set S of vertices in a connected graph G is a resolving hop dominating set of G if S is a resolving set in G and for every vertex v ∈ V (G) \ S there exists u ∈ S such that dG(u, v) = 2. The smallest cardinality of such a set S is called the resolving hop domination number of G. This paper presents the characterizations of the resolving hop dominating sets in the join, corona and lexicographic product of two graphs and determines the exact values of their corresponding resolving hop domination number.


2019 ◽  
Vol 11 (1) ◽  
pp. 52-64
Author(s):  
Libin Chacko Samuel ◽  
Mayamma Joseph

Abstract A set of vertices in a graph is a dominating set if every vertex not in the set is adjacent to at least one vertex in the set. A dominating structure is a subgraph induced by the dominating set. Connected domination is a type of domination where the dominating structure is connected. Clique domination is a type of domination in graphs where the dominating structure is a complete subgraph. The clique domination number of a graph G denoted by γk(G) is the minimum cardinality among all the clique dominating sets of G. We present few properties of graphs admitting dominating cliques along with bounds on clique domination number in terms of order and size of the graph. A necessary and sufficient condition for the existence of dominating clique in strong product of graphs is presented. A forbidden subgraph condition necessary to imply the existence of a connected dominating set of size four also is found.


Sign in / Sign up

Export Citation Format

Share Document