Persistence and periodicity of a delayed ratio-dependent predator–prey model with stage structure and prey dispersal

2004 ◽  
Vol 159 (3) ◽  
pp. 823-846 ◽  
Author(s):  
Rui Xu ◽  
M.A.J. Chaplain ◽  
F.A. Davidson
2012 ◽  
Vol 05 (04) ◽  
pp. 1250014 ◽  
Author(s):  
LIJUAN ZHA ◽  
JING-AN CUI ◽  
XUEYONG ZHOU

Ratio-dependent predator–prey models are favored by many animal ecologists recently as more suitable ones for predator–prey interactions where predation involves searching process. In this paper, a ratio-dependent predator–prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Lingshu Wang ◽  
Guanghui Feng

A ratio-dependent predator-prey model incorporating a prey refuge with disease in the prey population is formulated and analyzed. The effects of time delay due to the gestation of the predator and stage structure for the predator on the dynamics of the system are concerned. By analyzing the corresponding characteristic equations, the local stability of a predator-extinction equilibrium and a coexistence equilibrium of the system is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the coexistence equilibrium, whenτ=τ0. By comparison arguments, sufficient conditions are obtained for the global stability of the predator-extinction equilibrium. By using an iteration technique, sufficient conditions are derived for the global attractivity of the coexistence equilibrium of the proposed system.


Sign in / Sign up

Export Citation Format

Share Document