Chebyshev pseudospectral method for computing numerical solution of convection–diffusion equation

2008 ◽  
Vol 200 (2) ◽  
pp. 537-546 ◽  
Author(s):  
F.S.V. Bazán
2013 ◽  
Vol 380-384 ◽  
pp. 1143-1146
Author(s):  
Xiang Guo Liu

The paper researches the parametric inversion of the two-dimensional convection-diffusion equation by means of best perturbation method, draw a Numerical Solution for such inverse problem. It is shown by numerical simulations that the method is feasible and effective.


2005 ◽  
Vol 2005 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Mehdi Dehghan

The numerical solution of convection-diffusion transport problems arises in many important applications in science and engineering. These problems occur in many applications such as in the transport of air and ground water pollutants, oil reservoir flow, in the modeling of semiconductors, and so forth. This paper describes several finite difference schemes for solving the one-dimensional convection-diffusion equation with constant coefficients. In this research the use of modified equivalent partial differential equation (MEPDE) as a means of estimating the order of accuracy of a given finite difference technique is emphasized. This approach can unify the deduction of arbitrary techniques for the numerical solution of convection-diffusion equation. It is also used to develop new methods of high accuracy. This approach allows simple comparison of the errors associated with the partial differential equation. Various difference approximations are derived for the one-dimensional constant coefficient convection-diffusion equation. The results of a numerical experiment are provided, to verify the efficiency of the designed new algorithms. The paper ends with a concluding remark.


Author(s):  
Noorulhaq Ahmadi ◽  
Mohammadi Khan Mohammadi

In this work, we discuss a hybrid-based method on differential transforms and a finite difference method to numerical solution of convection–diffusion equation with Dirichlet’s type boundary conditions. The developed method is tested on various problems and the numerical results are reported in tabular and figure form. This method can be easily extended to handle non-linear convection–diffusion partial differential equations.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
S. S. Motsa ◽  
P. G. Dlamini ◽  
M. Khumalo

A new multistage numerical method based on blending a Gauss-Siedel relaxation method and Chebyshev pseudospectral method, for solving complex dynamical systems exhibiting hyperchaotic behavior, is presented. The proposed method, called the multistage spectral relaxation method (MSRM), is applied for the numerical solution of three hyperchaotic systems, namely, the Chua, Chen, and Rabinovich-Fabrikant systems. To demonstrate the performance of the method, results are presented in tables and diagrams and compared to results obtained using a Runge-Kutta-(4,5)-based MATLAB solver,ode45, and other previously published results.


Sign in / Sign up

Export Citation Format

Share Document