steady convection
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 11)

H-INDEX

30
(FIVE YEARS 1)

2021 ◽  
Vol 933 ◽  
Author(s):  
Baole Wen ◽  
David Goluskin ◽  
Charles R. Doering

The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $Ra\to \infty$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $Nu \sim Ra^{1/3}$ or ‘ultimate’ $Nu \sim Ra^{1/2}$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $10^{14}$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $Ra\to \infty$ , it cannot achieve the ultimate scaling.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2524
Author(s):  
Fengxin Sun ◽  
Jufeng Wang ◽  
Xiang Kong ◽  
Rongjun Cheng

By introducing the dimension splitting method (DSM) into the generalized element-free Galerkin (GEFG) method, a dimension splitting generalized interpolating element-free Galerkin (DS-GIEFG) method is presented for analyzing the numerical solutions of the singularly perturbed steady convection–diffusion–reaction (CDR) problems. In the DS-GIEFG method, the DSM is used to divide the two-dimensional CDR problem into a series of lower-dimensional problems. The GEFG and the improved interpolated moving least squares (IIMLS) methods are used to obtain the discrete equations on the subdivision plane. Finally, the IIMLS method is applied to assemble the discrete equations of the entire problem. Some examples are solved to verify the effectiveness of the DS-GIEFG method. The numerical results show that the numerical solution converges to the analytical solution with the decrease in node spacing, and the DS-GIEFG method has high computational efficiency and accuracy.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bin Lan ◽  
Jianqiang Dong

In this paper, a nonlinear finite volume scheme preserving positivity for solving 2D steady convection-diffusion equation on arbitrary convex polygonal meshes is proposed. First, the nonlinear positivity-preserving finite volume scheme is developed. Then, in order to avoid the computed solution beyond the upper bound, the cell-centered unknowns and auxiliary unknowns on the cell-edge are corrected. We prove that the present scheme can avoid the numerical solution beyond the upper bound. Our scheme is locally conservative and has only cell-centered unknowns. Numerical results show that our scheme preserves the above conclusion and has second-order accuracy for solution.


Sign in / Sign up

Export Citation Format

Share Document