A quadratic convergence yielding iterative method for the implementation of Lavrentiev regularization method for ill-posed equations

2015 ◽  
Vol 254 ◽  
pp. 148-156 ◽  
Author(s):  
P. Jidesh ◽  
Vorkady S. Shubha ◽  
Santhosh George
2006 ◽  
Vol 46 (3) ◽  
pp. 589-606 ◽  
Author(s):  
S. Morigi ◽  
L. Reichel ◽  
F. Sgallari

2012 ◽  
Vol 12 (1) ◽  
pp. 32-45 ◽  
Author(s):  
Santhosh George ◽  
Atef Ibrahim Elmahdy

AbstractIn this paper, we consider an iterative method for the approximate solution of the nonlinear ill-posed operator equation Tx = y. The iteration procedure converges quadratically to the unique solution of the equation for the regularized approximation. It is known that (Tautanhahn (2002)) this solution converges to the solution of the given ill-posed operator equation. The convergence analysis and the stopping rule are based on a suitably constructed majorizing sequence. We show that the adaptive scheme considered by Perverzev and Schock (2005) for choosing the regularization parameter can be effectively used here for obtaining an optimal order error estimate.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2016 ◽  
Vol 26 (3) ◽  
pp. 623-640 ◽  
Author(s):  
Sara Beddiaf ◽  
Laurent Autrique ◽  
Laetitia Perez ◽  
Jean-Claude Jolly

Abstract Inverse three-dimensional heat conduction problems devoted to heating source localization are ill posed. Identification can be performed using an iterative regularization method based on the conjugate gradient algorithm. Such a method is usually implemented off-line, taking into account observations (temperature measurements, for example). However, in a practical context, if the source has to be located as fast as possible (e.g., for diagnosis), the observation horizon has to be reduced. To this end, several configurations are detailed and effects of noisy observations are investigated.


Sign in / Sign up

Export Citation Format

Share Document