Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links

2021 ◽  
Vol 389 ◽  
pp. 125498 ◽  
Author(s):  
Yao Xu ◽  
Jintong Yu ◽  
Wenxue Li ◽  
Jiqiang Feng
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Priyanka Kokil ◽  
V. Krishna Rao Kandanvli ◽  
Haranath Kar

This paper is concerned with the problem of global asymptotic stability of linear discrete-time systems with interval-like time-varying delay in the state. By utilizing the concept of delay partitioning, a new linear-matrix-inequality-(LMI-) based criterion for the global asymptotic stability of such systems is proposed. The proposed criterion does not involve any free weighting matrices but depends on both the size of delay and partition size. The developed approach is extended to address the problem of global asymptotic stability of state-delayed discrete-time systems with norm-bounded uncertainties. The proposed results are compared with several existing results.


Mathematics ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 138
Author(s):  
Zhixin Zhang ◽  
Yufeng Zhang ◽  
Jia-Bao Liu ◽  
Jiang Wei

In this paper, the global asymptotical stability of Riemann-Liouville fractional-order neural networks with time-varying delays is studied. By combining the Lyapunov functional function and LMI approach, some sufficient criteria that guarantee the global asymptotical stability of such fractional-order neural networks with both discrete time-varying delay and distributed time-varying delay are derived. The stability criteria is suitable for application and easy to be verified by software. Lastly, some numerical examples are presented to check the validity of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document