Ground state solution on a Kirchhoff type equation involving two potentials

2019 ◽  
Vol 94 ◽  
pp. 149-154 ◽  
Author(s):  
Jiu Liu ◽  
Tao, Liu ◽  
Hong-Ying Li
Author(s):  
Jiu Liu ◽  
Jia-Feng Liao ◽  
Chun-Lei Tang

In this paper, we study the following Kirchhoff-type equation: where a, b are positive constants and N = 1, 2, 3. Under appropriate assumptions on V, K and g, we obtain a ground-state solution by using the approach developed by Szulkin and Weth in 2010.


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


2017 ◽  
Vol 8 (1) ◽  
pp. 267-277 ◽  
Author(s):  
Chao Ji ◽  
Fei Fang ◽  
Binlin Zhang

Abstract In this paper, we study the following Kirchhoff type equation: -\bigg{(}1+b\int_{\mathbb{R}^{N}}\lvert\nabla u|^{2}\,dx\biggr{)}\Delta u+u=a(% x)f(u)\quad\text{in }\mathbb{R}^{N},\qquad u\in H^{1}(\mathbb{R}^{N}), where {N\geq 3} , {b>0} and {f(s)} is asymptotically linear at infinity, that is, {f(s)\sim O(s)} as {s\rightarrow+\infty} . By using variational methods, we obtain the existence of a mountain pass type solution and a ground state solution under appropriate assumptions on {a(x)} .


2018 ◽  
Vol 61 (2) ◽  
pp. 353-369 ◽  
Author(s):  
Dongdong Qin ◽  
Yubo He ◽  
Xianhua Tang

AbstractIn this paper, we consider the following critical Kirchhoff type equation:By using variational methods that are constrained to the Nehari manifold, we prove that the above equation has a ground state solution for the case when 3 < q < 5. The relation between the number of maxima of Q and the number of positive solutions for the problem is also investigated.


Author(s):  
Shengbing Deng ◽  
Tingting Huang

The aim of this paper is to study the ground state solution for a Kirchhoff type elliptic systems without the Ambrosetti-Rabinowitz condition.


Sign in / Sign up

Export Citation Format

Share Document