The existence of a ground-state solution for a class of Kirchhoff-type equations in ℝN

Author(s):  
Jiu Liu ◽  
Jia-Feng Liao ◽  
Chun-Lei Tang

In this paper, we study the following Kirchhoff-type equation: where a, b are positive constants and N = 1, 2, 3. Under appropriate assumptions on V, K and g, we obtain a ground-state solution by using the approach developed by Szulkin and Weth in 2010.

2019 ◽  
Vol 150 (3) ◽  
pp. 1377-1400 ◽  
Author(s):  
Daniele Cassani ◽  
Jean Van Schaftingen ◽  
Jianjun Zhang

AbstractFor the Choquard equation, which is a nonlocal nonlinear Schrödinger type equation, $$-\Delta u+V_{\mu, \nu} u=(I_\alpha\ast \vert u \vert ^{({N+\alpha})/{N}}){ \vert u \vert }^{{\alpha}/{N}-1}u,\quad {\rm in} \ {\open R}^N, $$where $N\ges 3$, Vμ,ν :ℝN → ℝ is an external potential defined for μ, ν > 0 and x ∈ ℝN by Vμ,ν(x) = 1 − μ/(ν2 + |x|2) and $I_\alpha : {\open R}^N \to 0$ is the Riesz potential for α ∈ (0, N), we exhibit two thresholds μν, μν > 0 such that the equation admits a positive ground state solution if and only if μν < μ < μν and no ground state solution exists for μ < μν. Moreover, if μ > max{μν, N2(N − 2)/4(N + 1)}, then equation still admits a sign changing ground state solution provided $N \ges 4$ or in dimension N = 3 if in addition 3/2 < α < 3 and $\ker (-\Delta + V_{\mu ,\nu }) = \{ 0\} $, namely in the non-resonant case.


2018 ◽  
Vol 61 (4) ◽  
pp. 1023-1040 ◽  
Author(s):  
Jianjun Zhang ◽  
David G. Costa ◽  
João Marcos do Ó

AbstractWe are concerned with the following Kirchhoff-type equation$$ - \varepsilon ^2M\left( {\varepsilon ^{2 - N}\int_{{\open R}^N} {\vert \nabla u \vert^2{\rm d}x} } \right)\Delta u + V(x)u = f(u),\quad x \in {{\open R}^N},\quad N{\rm \ges }2,$$whereM ∈ C(ℝ+, ℝ+),V ∈ C(ℝN, ℝ+) andf(s) is of critical growth. In this paper, we construct a localized bound state solution concentrating at a local minimum ofVasε → 0 under certain conditions onf(s),MandV. In particular, the monotonicity off(s)/sand the Ambrosetti–Rabinowitz condition are not required.


Author(s):  
Jun Wang ◽  
Junxiang Xu ◽  
Fubao Zhang

This paper is concerned with the following semilinear elliptic equations of the formwhere ε is a small positive parameter, and where f and g denote superlinear and subcritical nonlinearity. Suppose that b(x) has at least one maximum. We prove that the system has a ground-state solution (ψε, φε) for all sufficiently small ε > 0. Moreover, we show that (ψε, φε) converges to the ground-state solution of the associated limit problem and concentrates to a maxima point of b(x) in certain sense, as ε → 0. Furthermore, we obtain sufficient conditions for nonexistence of ground-state solutions.


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


2010 ◽  
Vol 53 (2) ◽  
pp. 245-255 ◽  
Author(s):  
HAIYANG HE

AbstractWe consider in this paper the problem (1) where Ω is the unit ball in ℝN centred at the origin, 0 ≤ α < pN,β > 0, N ≥ 3. Suppose qϵ → q as ϵ → 0+ and qϵ, q satisfy, respectively, we investigate the asymptotic estimates of the ground-state solutions (uϵ, vϵ) of (1) as β → + ∞ with p, qϵ fixed. We also show the symmetry-breaking phenomenon with α, β fixed and qϵ → q as ϵ → 0+. In addition, the ground-state solution is non-radial provided that ϵ > 0 is small or β is large enough.


Sign in / Sign up

Export Citation Format

Share Document