critical exponent
Recently Published Documents


TOTAL DOCUMENTS

1056
(FIVE YEARS 205)

H-INDEX

51
(FIVE YEARS 5)

Author(s):  
Jagadish Kumar Galivarapu ◽  
Ashika Jose ◽  
Erappanal Padmanabhan Jinu ◽  
Thirumalainaidu Thiagarajan Saravanan ◽  
Senthil Kumar Eswaran ◽  
...  

Abstract We report on observation of Griffiths phase, high magnetocaloric properties at low magnetic fields and temperature dependent critical exponents of La0.7Sr0.3VxMn1-xO3 (x=0, 0.05 & 0.1) perovskite bulk materials. The Curie temperature (TC) of pure La0.7Sr0.3MnO3 is seen to be 368.7 K and decreases towards room temperature (342.2 K) by 10 mol% vanadium doping at the Mn site. Vanadium doping leads to enhancement in magnetic entropy change (-SM) from 1 Jkg-1K-1to 1.41 Jkg-1K-1. Vanadium doping at Mn site leads to the formation of Griffiths phase, a magnetic disorder due to the co-existence of paramagnetic matrix and short range ferromagnetic clusters. X-ray photoelectron spectroscopy analysis confirm the presence of mixed valance V4+/V5+along with Mn3+/ Mn4+ ions contributing to various double exchange interactions. Nature of phase transitions and magnetic interactions are analyzed by evaluating critical exponents and. All the samples show second-order ferromagnetic (FM) to paramagnetic (PM) phase transition, confirmed from the modified Arrott’s plots and critical exponent analysis carried out using Kouvel-Fisher method. Enhancement in magnetic entropy change along with the decrease in Curie temperature towards room temperature by vanadium doping in the La0.7Sr0.3MnO3 oxides indicates the possible application of these materials for the magnetic refrigeration at low magnetic fields.


2022 ◽  
Vol 64 (3) ◽  
pp. 365
Author(s):  
А.А. Набережнов ◽  
О.А. Алексеева ◽  
А.В. Кудрявцева ◽  
Д.Ю. Чернышов ◽  
Т.Ю. Вергентьев ◽  
...  

The temperature evolution of the crystal structure of a nanocomposite material obtained by introducing sodium nitrate NaNO3 from a melt under pressure into a nanoporous alkali borosilicate glass with an average pore diameter of 7 nm has been studied by the method of diffraction of synchrotron radiation in a wide temperature range upon heating. Analysis of the experimental diffraction patterns revealed a significant decrease in the temperature of the structural (orientational) transition by more than 50 K (up to 496 K) compared to bulk sodium nitrate. From the temperature dependence of the intensity of the superstructure peak (113), the dependence of the critical exponent β (T) for this transition was obtained and a significant difference from the critical exponent for a bulk material was found in the temperature range from 455 K to the transition temperature. Analysis of the broadening of Bragg reflections made it possible to estimate the average size (~ 40 nm) of sodium nitrate nanoparticles into the pores. An increase in the linear coefficient of thermal expansion in the [001] direction was found in NaNO3 nanoparticles in comparison with bulk material at temperatures above 450 K.


Author(s):  
Marcelo Ebert ◽  
Jorge Marques

We consider the nonlinear massless wave equation belonging to some family of the Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. We prove the global in time small data solutions for supercritical powers in the case of decelerating expansion universe.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiaowei Li ◽  
Feizhi Wang

AbstractIn this paper, we consider a class of Choquard equations with Hardy–Littlewood–Sobolev lower or upper critical exponent in the whole space $\mathbb{R}^{N}$ R N . We combine an argument of L. Jeanjean and H. Tanaka (see (Proc. Am. Math. Soc. 131:2399–2408, 2003) with a concentration–compactness argument, and then we obtain the existence of ground state solutions, which extends and complements the earlier results.


Sign in / Sign up

Export Citation Format

Share Document