A multiplicity result for asymptotically linear Kirchhoff equations

2017 ◽  
Vol 8 (1) ◽  
pp. 267-277 ◽  
Author(s):  
Chao Ji ◽  
Fei Fang ◽  
Binlin Zhang

Abstract In this paper, we study the following Kirchhoff type equation: -\bigg{(}1+b\int_{\mathbb{R}^{N}}\lvert\nabla u|^{2}\,dx\biggr{)}\Delta u+u=a(% x)f(u)\quad\text{in }\mathbb{R}^{N},\qquad u\in H^{1}(\mathbb{R}^{N}), where {N\geq 3} , {b>0} and {f(s)} is asymptotically linear at infinity, that is, {f(s)\sim O(s)} as {s\rightarrow+\infty} . By using variational methods, we obtain the existence of a mountain pass type solution and a ground state solution under appropriate assumptions on {a(x)} .

2018 ◽  
Vol 61 (2) ◽  
pp. 353-369 ◽  
Author(s):  
Dongdong Qin ◽  
Yubo He ◽  
Xianhua Tang

AbstractIn this paper, we consider the following critical Kirchhoff type equation:By using variational methods that are constrained to the Nehari manifold, we prove that the above equation has a ground state solution for the case when 3 < q < 5. The relation between the number of maxima of Q and the number of positive solutions for the problem is also investigated.


Author(s):  
Jiu Liu ◽  
Jia-Feng Liao ◽  
Chun-Lei Tang

In this paper, we study the following Kirchhoff-type equation: where a, b are positive constants and N = 1, 2, 3. Under appropriate assumptions on V, K and g, we obtain a ground-state solution by using the approach developed by Szulkin and Weth in 2010.


Author(s):  
Vincenzo Ambrosio ◽  
Teresa Isernia

AbstractIn this paper, we study a class of (p, q)-Schrödinger–Kirchhoff type equations involving a continuous positive potential satisfying del Pino–Felmer type conditions and a continuous nonlinearity with subcritical growth at infinity. By applying variational methods, penalization techniques and Lusternik–Schnirelman category theory, we relate the number of positive solutions with the topology of the set where the potential attains its minimum values.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yuan Gao ◽  
Lishan Liu ◽  
Shixia Luan ◽  
Yonghong Wu

AbstractA Kirchhoff-type problem with concave-convex nonlinearities is studied. By constrained variational methods on a Nehari manifold, we prove that this problem has a sign-changing solution with least energy. Moreover, we show that the energy level of this sign-changing solution is strictly larger than the double energy level of the ground state solution.


Author(s):  
Manassés de Souza ◽  
Uberlandio B. Severo ◽  
Thiago Luiz do Rêgo

In this paper, we prove the existence of at least three nontrivial solutions for the following class of fractional Kirchhoff-type problems: [Formula: see text] where [Formula: see text] is a constant, [Formula: see text] is a bounded open interval, [Formula: see text] is a continuous potential, the nonlinear term [Formula: see text] has exponential growth of Trudinger–Moser type, [Formula: see text] and [Formula: see text] denotes the standard Gagliardo seminorm of the fractional Sobolev space [Formula: see text]. More precisely, by exploring a minimization argument and the quantitative deformation lemma, we establish the existence of a nodal (or sign-changing) solution and by means of the Mountain Pass Theorem, we get one nonpositive and one nonnegative ground state solution. Moreover, we show that the energy of the nodal solution is strictly larger than twice the ground state level. When we regard [Formula: see text] as a positive parameter, we study the behavior of the nodal solutions as [Formula: see text].


2015 ◽  
Vol 55 (1) ◽  
pp. 183-188
Author(s):  
S. H. Rasouli ◽  
B. Salehi

Abstract In this paper, by using the Mountain Pass Lemma, we study the existence of nontrivial solutions for a nonlocal elliptic Kirchhoff type equation together with nonlinear boundary conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
N. Nyamoradi ◽  
Y. Zhou ◽  
E. Tayyebi ◽  
B. Ahmad ◽  
A. Alsaedi

We study the existence of solutions for time fractional Schrödinger-Kirchhoff type equation involving left and right Liouville-Weyl fractional derivatives via variational methods.


2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document