A generalized exponential functional link artificial neural networks filter with channel-reduced diagonal structure for nonlinear active noise control

2018 ◽  
Vol 139 ◽  
pp. 174-181 ◽  
Author(s):  
Dinh Cong Le ◽  
Jiashu Zhang ◽  
Defang Li ◽  
Sheng Zhang
2009 ◽  
Vol 16 (3) ◽  
pp. 325-334 ◽  
Author(s):  
Ya-li Zhou ◽  
Qi-zhi Zhang ◽  
Tao Zhang ◽  
Xiao-dong Li ◽  
Woon-seng Gan

In practical active noise control (ANC) systems, the primary path and the secondary path may be nonlinear and time-varying. It has been reported that the linear techniques used to control such ANC systems exhibit degradation in performance. In addition, the actuators of an ANC system very often have nonminimum-phase response. A linear controller under such situations yields poor performance. A novel functional link artificial neural network (FLANN)-based simultaneous perturbation stochastic approximation (SPSA) algorithm, which functions as a nonlinear mode-free (MF) controller, is proposed in this paper. Computer simulations have been carried out to demonstrate that the proposed algorithm outperforms the standard filtered-x least mean square (FXLMS) algorithm, and performs better than the recently proposed filtered-s least mean square (FSLMS) algorithm when the secondary path is time-varying. This observation implies that the SPSA-based MF controller can eliminate the need of the modeling of the secondary path for the ANC system.


Sign in / Sign up

Export Citation Format

Share Document