scholarly journals Erratum to: “Scott rank of Polish metric spaces” [Ann. Pure Appl. Logic 165 (12) (2014) 1919–1929]

2017 ◽  
Vol 168 (7) ◽  
pp. 1490 ◽  
Author(s):  
Michal Doucha
Keyword(s):  
2014 ◽  
Vol 165 (12) ◽  
pp. 1919-1929 ◽  
Author(s):  
Michal Doucha
Keyword(s):  

2020 ◽  
Vol 21 (01) ◽  
pp. 2150001
Author(s):  
William Chan

If [Formula: see text] is a proper Polish metric space and [Formula: see text] is any countable dense submetric space of [Formula: see text], then the Scott rank of [Formula: see text] in the natural first-order language of metric spaces is countable and in fact at most [Formula: see text], where [Formula: see text] is the Church–Kleene ordinal of [Formula: see text] (construed as a subset of [Formula: see text]) which is the least ordinal with no presentation on [Formula: see text] computable from [Formula: see text]. If [Formula: see text] is a rigid Polish metric space and [Formula: see text] is any countable dense submetric space, then the Scott rank of [Formula: see text] is countable and in fact less than [Formula: see text].


1969 ◽  
Vol 130 (1-6) ◽  
pp. 277-303 ◽  
Author(s):  
Aloysio Janner ◽  
Edgar Ascher

2016 ◽  
Vol 2017 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Muhammad Usman Ali ◽  
◽  
Tayyab Kamran ◽  
Mihai Postolache ◽  
◽  
...  

2001 ◽  
Vol 37 (1-2) ◽  
pp. 169-184
Author(s):  
B. Windels

In 1930 Kuratowski introduced the measure of non-compactness for complete metric spaces in order to measure the discrepancy a set may have from being compact.Since then several variants and generalizations concerning quanti .cation of topological and uniform properties have been studied.The introduction of approach uniform spaces,establishes a unifying setting which allows for a canonical quanti .cation of uniform concepts,such as completeness,which is the subject of this article.


Author(s):  
Jagdish C. Chaudhary ◽  
Shailesh T. Patel

In this paper, we prove some common fixed point theorems in complete metric spaces for self mapping satisfying a contractive condition of Integral  type.


2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


2019 ◽  
Vol 10 (1) ◽  
pp. 151-158
Author(s):  
Bijay Kumar Singh ◽  
Pradeep Kumar Pathak

Sign in / Sign up

Export Citation Format

Share Document