Mode-decomposition memory reinforcement network strategy for smart generation control in multi-area power systems containing renewable energy

2022 ◽  
Vol 307 ◽  
pp. 118266
Author(s):  
Linfei Yin ◽  
Yunzhi Wu
2020 ◽  
Vol 17 (4) ◽  
pp. 1976-1984
Author(s):  
G. Soorya Priya ◽  
P. Sivakumar

In recent days renewable energy plays a vital role in the world electrical energy in the form of standalone and grid connected. Grid connected renewable energy power systems are widely preferred because the energy storage devices are not essential for this power system. Maintaining frequency in an interconnected power system plays a significant role in quality of power. Automatic generation control plays a crucial role in maintaining power quality in an interconnected power system. In this paper, automatic generation control is analyzed for grid connected Solar power system and wind power system are interconnected with the conventional hydro thermal power system. The proposed system is analyzed using Matlab.


Author(s):  
S. G. Obukhov ◽  
I. A. Plotnikov ◽  
V. G. Masolov

The paper presents the results of the comparative analysis of operation modes of an autonomous hybrid power complex with/without the energy store. We offere the technique which defines the power characteristics of the main components of a hybrid power complex: the consumers of the electric power, wind power and photo-electric installations (the last ones have been constructed). The paper establishes that, in order to compensate the seasonal fluctuations of power in autonomous power systems with renewable energy resources, the accumulative devices are required, with a capacity of tens of MWh including devices that are capable to provide energy storage with duration about half a year. This allows abandoning the storage devices for smoothing the seasonal fluctuations in the energy balance.The analysis of operation modes of energy stores has shown that for a stock and delivery of energy on time intervals, lasting several hours, the accumulative devices with rather high values of charging and digit power aren't required. It allows using the lead-acid rechargeable batteries of the deep category for smoothing the daily peaks of surplus and a capacity shortage. Moreover, the analysis of operation modes of energy stores as a part of the hybrid complexes has demonstrated that in charging/digit currents of the energy store the low-frequency and high-frequency pulsations of big amplitude caused by changes of size of output power of the renewable power installations and loading are inevitable. If low-frequency pulsations (the period of tens of minutes) can partially be damped due to the restriction of size of the maximum charging current of rechargeable batteries, then it is essentially impossible to eliminate high-frequency pulsations (the period of tens of seconds) in the power systems with the only store of energy. The paper finds out that the combined energy store having characteristics of the accumulator in the modes of receiving and delivery of power on daily time intervals, and at the same time having properties of the supercondenser in the modes of reception and return of impulses of power on second intervals of time is best suited to requirements of the autonomous power complexes with renewable energy resources.


Author(s):  
Aurobindo Behera ◽  
Tapas K. Panigrahi ◽  
Arun K. Sahoo

Background: Power system stability demands minimum variation in frequency, so that loadgeneration balance is maintained throughout the operation period. An Automatic Generation Control (AGC) monitors the frequency and varies the generation to maintain the balance. A system with multiple energy sources and use of a fractional controller for efficient control of stability is presented in the paper. At the outset a 2-area thermal system with governor dead band, generation rate constraint and boiler dynamics have been applied. Methods: A variation of load is deliberated for the study of the considered system with Harmony Search (HS) algorithm, applied for providing optimization of controller parameters. Integral Square Time Square Error (ISTSE) is chosen as objective function for handling the process of tuning controller parameters. : A study of similar system with various lately available techniques such as TLBO, hFA-PS and BFOA applied to PID, IDD and PIDD being compared to HS tuned fractional controller is presented under step and dynamic load change. The effort extended to a single area system with reheat thermal plant, hydel plant and a unit of wind plant is tested with the fractional controller scheme. Results: The simulation results provide a clear idea of the superiority of the combination of HS algorithm and FO-PID controller, under dynamically changing load. The variation of load is taken from 1% to 5% of the connected load. Conclusion: Finally, system robustness is shown by modifying essential factors by ± 30%.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 115
Author(s):  
Nasser Hosseinzadeh ◽  
Asma Aziz ◽  
Apel Mahmud ◽  
Ameen Gargoom ◽  
Mahbub Rabbani

The main purpose of developing microgrids (MGs) is to facilitate the integration of renewable energy sources (RESs) into the power grid. RESs are normally connected to the grid via power electronic inverters. As various types of RESs are increasingly being connected to the electrical power grid, power systems of the near future will have more inverter-based generators (IBGs) instead of synchronous machines. Since IBGs have significant differences in their characteristics compared to synchronous generators (SGs), particularly concerning their inertia and capability to provide reactive power, their impacts on the system dynamics are different compared to SGs. In particular, system stability analysis will require new approaches. As such, research is currently being conducted on the stability of power systems with the inclusion of IBGs. This review article is intended to be a preface to the Special Issue on Voltage Stability of Microgrids in Power Systems. It presents a comprehensive review of the literature on voltage stability of power systems with a relatively high percentage of IBGs in the generation mix of the system. As the research is developing rapidly in this field, it is understood that by the time that this article is published, and further in the future, there will be many more new developments in this area. Certainly, other articles in this special issue will highlight some other important aspects of the voltage stability of microgrids.


Sign in / Sign up

Export Citation Format

Share Document