scholarly journals Flux-splitting dispersion-relation-preserving dual-compact upwind scheme for solving the Maxwell’s equations on non-staggered grids

2013 ◽  
Vol 37 (7) ◽  
pp. 4747-4758
Author(s):  
Pao-Hsiung Chiu ◽  
Reui-Kuo Lin ◽  
Sheng-Hsiu Kuo ◽  
Yan-Ting Lin
1976 ◽  
Vol 16 (1) ◽  
pp. 47-55 ◽  
Author(s):  
V. Atanassov ◽  
I. Zhelyazkov ◽  
A. Shivarova ◽  
Zh. Genchev

In this paper we propose an exact solution of Vlasov and Maxwell's equations for a bounded hot plasma in order to derive the dispersion relation of the axially-symmetric surface waves propagating along a plasma column. Assuming specular reflexion of plasma particles from the boundary, expressions for the components of the electric displacement vector are obtained on the basis of the Vlasov equation. Their substitution in Maxwell's equations, neglecting the spatial dispersion in the transverse plasma dielectric function, allows us to determine the plasma impedance. The equating of plasma and dielectric impedances gives the wave dispersion relation which, in different limiting cases, coincides with the well-known results.


2013 ◽  
Vol 13 (4) ◽  
pp. 1107-1133 ◽  
Author(s):  
Tony W. H. Sheu ◽  
L. Y. Liang ◽  
J. H. Li

AbstractIn this paper an explicit finite-difference time-domain scheme for solving the Maxwell’s equations in non-staggered grids is presented. The proposed scheme for solving the Faraday’s and Ampere’s equations in a theoretical manner is aimed to preserve discrete zero-divergence for the electric and magnetic fields. The inherent local conservation laws in Maxwell’s equations are also preserved discretely all the time using the explicit second-order accurate symplectic partitioned Runge-Kutta scheme. The remaining spatial derivative terms in the semi-discretized Faraday’s and Ampere’s equations are then discretized to provide an accurate mathematical dispersion relation equation that governs the numerical angular frequency and the wavenumbers in two space dimensions. To achieve the goal of getting the best dispersive characteristics, we propose a fourth-order accurate space centered scheme which minimizes the difference between the exact and numerical dispersion relation equations. Through the computational exercises, the proposed dual-preserving solver is computationally demonstrated to be efficient for use to predict the long-term accurate Maxwell’s solutions.


PIERS Online ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Fethi Bin Muhammad Belgacem

Sign in / Sign up

Export Citation Format

Share Document