hot plasma
Recently Published Documents


TOTAL DOCUMENTS

670
(FIVE YEARS 80)

H-INDEX

43
(FIVE YEARS 5)

2021 ◽  
Vol 923 (2) ◽  
pp. 256
Author(s):  
Yu Qiu ◽  
Brian R. McNamara ◽  
Tamara Bogdanović ◽  
Kohei Inayoshi ◽  
Luis C. Ho

Abstract Outflows driven by active galactic nuclei (AGNs) are an important channel for accreting supermassive black holes (SMBHs) to interact with their host galaxies and clusters. Properties of the outflows are however poorly constrained due to the lack of kinetically resolved data of the hot plasma that permeates the circumgalactic and intracluster space. In this work, we use a single parameter, outflow-to-accretion mass-loading factor m = M ̇ jet / M ̇ BH , to characterize the outflows that mediate the interaction between SMBHs and their hosts. By modeling both M87 and Perseus, and comparing the simulated thermal profiles with the X-ray observations of these two systems, we demonstrate that m can be constrained between 200 and 500. This parameter corresponds to a bulk flow speed between 4000 and 7000 km s−1 at around 1 kpc, and a thermalized outflow temperature between 108.7 and 109 K. Our results indicate that the dominant outflow speeds in giant elliptical galaxies and clusters are much lower than in the close vicinity of the SMBH, signaling an efficient coupling with and deceleration by the surrounding medium on length scales below 1 kpc. Consequently, AGNs may be efficient at launching outflows ∼10 times more massive than previously uncovered by measurements of cold, obscuring material. We also examine the mass and velocity distribution of the cold gas, which ultimately forms a rotationally supported disk in simulated clusters. The rarity of such disks in observations indicates that further investigations are needed to understand the evolution of the cold gas after it forms.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Saurav Das ◽  
Anson Hook

Abstract In the early universe, evaporating black holes heat up the surrounding plasma and create a temperature profile around the black hole that can be more important than the black hole itself. As an example, we demonstrate how the hot plasma surrounding evaporating black holes can efficiently produce monopoles via the Kibble-Zurek mechanism. In the case where black holes reheat the universe, reheat temperatures above ∼ 500 GeV can already lead to monopoles overclosing the universe.


2021 ◽  
Vol 922 (2) ◽  
pp. L30
Author(s):  
Katherine E. Whitaker ◽  
Desika Narayanan ◽  
Christina C. Williams ◽  
Qi Li ◽  
Justin S. Spilker ◽  
...  

Abstract Observations of cold molecular gas reservoirs are critical for understanding the shutdown of star formation in massive galaxies. While dust continuum is an efficient and affordable tracer, this method relies upon the assumption of a “normal” molecular-gas to dust mass ratio, δ GDR, typically of order 100. Recent null detections of quiescent galaxies in deep dust continuum observations support a picture where the cold gas and dust have been rapidly depleted or expelled. In this work, we present another viable explanation: a significant fraction of galaxies with low star formation per unit stellar mass are predicted to have extreme δ GDR ratios. We show that simulated massive quiescent galaxies at 0 < z < 3 in the simba cosmological simulations have δ GDR values that extend >4 orders of magnitude. The dust in most simulated quiescent galaxies is destroyed significantly more rapidly than the molecular gas depletes, and cannot be replenished. The transition from star-forming to quiescent halts dust formation via star formation processes, with dust subsequently destroyed by supernova shocks and thermal sputtering of dust grains embedded in hot plasma. After this point, the dust growth rate in the models is not sufficient to overcome the loss of >3 orders of magnitude in dust mass to return to normal values of δ GDR despite having high metallicity. Our results indicate that it is not straight forward to use a single observational indicator to robustly preselect exotic versus normal ratios. These simulations make strong predictions that can be tested with millimeter facilities.


2021 ◽  
Vol 921 (2) ◽  
pp. 179
Author(s):  
Dong Li ◽  
Mingyu Ge ◽  
Marie Dominique ◽  
Haisheng Zhao ◽  
Gang Li ◽  
...  

Abstract Quasi-periodic pulsations (QPPs), which usually appear as temporal pulsations of the total flux, are frequently detected in the light curves of solar/stellar flares. In this study, we present the investigation of nonstationary QPPs with multiple periods during the impulsive phase of a powerful flare on 2017 September 6, which were simultaneously measured by the Hard X-ray Modulation Telescope (Insight-HXMT), as well as the ground-based BLENSW. The multiple periods, detected by applying a wavelet transform and Lomb–Scargle periodogram to the detrended light curves, are found to be ∼20–55 s in the Lyα and mid-ultraviolet Balmer continuum emissions during the flare impulsive phase. Similar QPPs with multiple periods are also found in the hard X-ray emission and low-frequency radio emission. Our observations suggest that the flare QPPs could be related to nonthermal electrons accelerated by the repeated energy release process, i.e., triggering of repetitive magnetic reconnection, while the multiple periods might be modulated by the sausage oscillation of hot plasma loops. For the multiperiodic pulsations, other generation mechanisms could not be completely ruled out.


Author(s):  
Yu-Xuan Li ◽  
Wen-Ya Li ◽  
Bin-Bin Tang ◽  
C. Norgren ◽  
Jian-Sen He ◽  
...  

Cold (few eV) ions of ionospheric origin are widely observed in the lobe region of Earth’s magnetotail and can enter the ion jet region after magnetic reconnection is triggered in the magnetotail. Here, we investigate a magnetotail crossing with cold ions in one tailward and two earthward ion jets observed by the Magnetospheric Multiscale (MMS) constellation of spacecraft. Cold ions co-existing with hot plasma-sheet ions form types of ion velocity distribution functions (VDFs) in the three jets. In one earthward jet, MMS observe cold-ion beams with large velocities parallel to the magnetic fields, and we perform quantitative analysis on the ion VDFs in this jet. The cold ions, together with the hot ions, are reconnection outflow ions and are a minor population in terms of number density inside this jet. The average bulk speed of the cold-ion beams is approximately 38% larger than that of the hot plasma-sheet ions. The cold-ion beams inside the explored jet are about one order of magnitude colder than the hot plasma-sheet ions. These cold-ion beams could be accelerated by the Hall electric field in the cold ion diffusion region and the shrinking magnetic field lines through the Fermi effect.


Author(s):  
Hannes Weber ◽  
Omar Maj ◽  
Emanuele Poli

AbstractElectromagnetic waves are described by Maxwell’s equations together with the constitutive equation of the considered medium. The latter equation in general may introduce complicated operators. As an example, for electron cyclotron (EC) waves in a hot plasma, an integral operator is present. Moreover, the wavelength and computational domain may differ by orders of magnitude making a direct numerical solution unfeasible, with the available numerical techniques. On the other hand, given the scale separation between the free-space wavelength $$\lambda _0$$ λ 0 and the scale L of the medium inhomogeneity, an asymptotic solution for a wave beam can be constructed in the limit $$\kappa = 2\pi L / \lambda _0 \rightarrow \infty$$ κ = 2 π L / λ 0 → ∞ , which is referred to as the semiclassical limit. One example is the paraxial Wentzel-Kramer-Brillouin (pWKB) approximation. However, the semiclassical limit of the wave field may be inaccurate when random short-scale fluctuations of the medium are present. A phase-space description based on the statistically averaged Wigner function may solve this problem. The Wigner function in the semiclassical limit is determined by the wave kinetic equation (WKE), derived from Maxwell’s equations. We present a paraxial expansion of the Wigner function around the central ray and derive a set of ordinary differential equations (phase-space beam-tracing equations) for the Gaussian beam width along the central ray trajectory.


2021 ◽  
Vol 508 (1) ◽  
pp. 1321-1345
Author(s):  
Vincent Tatischeff ◽  
John C Raymond ◽  
Jean Duprat ◽  
Stefano Gabici ◽  
Sarah Recchia

ABSTRACT Galactic cosmic rays (GCRs) are thought to be accelerated in strong shocks induced by massive star winds and supernova explosions sweeping across the interstellar medium. But the phase of the interstellar medium from which the CRs are extracted has remained elusive until now. Here, we study in detail the GCR source composition deduced from recent measurements by the AMS-02, Voyager 1, and SuperTIGER experiments to obtain information on the composition, ionization state, and dust content of the GCR source reservoirs. We show that the volatile elements of the CR material are mainly accelerated from a plasma of temperature ≳ 2 MK, which is typical of the hot medium found in Galactic superbubbles energized by the activity of massive star winds and supernova explosions. Another GCR component, which is responsible for the overabundance of 22Ne, most likely arises from acceleration of massive star winds in their termination shocks. From the CR-related gamma-ray luminosity of the Milky Way, we estimate that the ion acceleration efficiency in both supernova shocks and wind termination shocks is of the order of 10−5. The GCR source composition also shows evidence for a preferential acceleration of refractory elements contained in interstellar dust. We suggest that the GCR refractories are also produced in superbubbles, from shock acceleration and subsequent sputtering of dust grains continuously incorporated into the hot plasma through thermal evaporation of embedded molecular clouds. Our model explains well the measured abundances of all primary and mostly primary CRs from H to Zr, including the overabundance of 22Ne.


Author(s):  
Mai Takeo ◽  
Takayuki Hayashi ◽  
Manabu Ishida ◽  
Nozomi Nakaniwa ◽  
Yoshitomo Maeda

Abstract We present our analysis of the Suzaku data of SS Cygni (SS Cyg) from 2005 both in quiescence and outburst. A fluorescent iron Kα line bears significant information about the geometry of an X-ray-emitting hot plasma and a cold reflector, such as the surfaces of the white dwarf (WD) and the accretion disk (AD). Our reflection simulation has revealed that the X-ray-emitting hot plasma is located either very close to the WD surface in the boundary layer (BL), with an upper limit radial position of &lt;1.004 times the white dwarf radius (RWD), or near the entrance of the BL where the optically thick AD is truncated at a distance of 1.14–1.27 RWD for the assumed WD mass of 1.19 M⊙ in quiescence. In the latter configuration, the plasma torus is located just above the inner edge of the AD. The result suggests that the accreting matter is heated up close to the maximum temperature immediately after the matter enters the BL. The matter probably expands precipitously at the entrance of the BL and leaves the disk plane to reach a height comparable to the radial distance of the plasma torus from the center of the WD. In outburst, on the other hand, our spectral analysis favors the picture that the optically thick disk reaches the WD surface. In addition, the plasma distributes above the disk like coronae, as suggested by a previous study, and the 90% upper limit of the coronae radial position is 1.2 RWD.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 987
Author(s):  
Robert B. Heimann

Functional osseoconductive coatings based on hydroxylapatite (HAp) and applied preferentially by atmospheric plasma spraying to medical implant surfaces are a mainstay of modern implantology. During contact with the hot plasma jet, HAp particles melt incongruently and undergo complex dehydration and decomposition reactions that alter their phase composition and crystallographic symmetry, and thus, the physical and biological properties of the coatings. Surface analytical methods such as laser-Raman and nuclear magnetic resonance (NMR) spectroscopies are useful tools to assess the structural changes of HAp imposed by heat treatment during their flight along the hot plasma jet. In this contribution, the controversial information is highlighted on the existence or non-existence of oxyapatite, i.e., fully dehydrated HAp as a thermodynamically stable compound.


Sign in / Sign up

Export Citation Format

Share Document