dispersion relation
Recently Published Documents


TOTAL DOCUMENTS

2144
(FIVE YEARS 231)

H-INDEX

67
(FIVE YEARS 6)

2022 ◽  
Vol 62 (1) ◽  
pp. 101092
Author(s):  
Yang Li ◽  
Masahide Otsubo ◽  
Arian Ghaemi ◽  
Troyee Tanu Dutta ◽  
Reiko Kuwano

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Aigner ◽  
Judith M. Dawes ◽  
Stefan A. Maier ◽  
Haoran Ren

AbstractHyperbolic metamaterials with a unique hyperbolic dispersion relation allow propagating waves with infinitely large wavevectors and a high density of states. Researchers from Korea and Singapore provide a comprehensive review of hyperbolic metamaterials, including artificially structured hyperbolic media and natural hyperbolic materials. They explain key nanophotonic concepts and describe a range of applications for these versatile materials.


2022 ◽  
Author(s):  
Ke-Rong He

Abstract The influence of the κ-deformed Kaniadakis distribution on Jeans instability in the background of f(R) gravity is investigated, the dispersion relation considering the κ-deformed Kaniadakis distribution is derived by exploiting the kinetic theory. The cases of high and low frequency perturbations are analyzed, respectively, it is found that the range of the unstable modes and the growth rates decrease with the increased distribution index κ in both of high and low frequency regime. Finally, based on the derivation of effective temperature, the relation between Jeans mass and temperature is studied, it is found that lower Jeans mass means that the system is more likely to collapse due to gravitational instability, the system is unstable for lower distribution index κ.


2022 ◽  
Vol 258 ◽  
pp. 02003
Author(s):  
Giuseppe Burgio ◽  
Hannes Vogt

We show that, when investigating Wilson-fermions correlation functions on the lattice, one is bound to encounter major difficulties in defining their dispersion relation, even at tree level. The problem is indeed quite general and, although we stumbled upon it while studying Coulomb-gauge applications, it also affects gauge fixed studies in covariant gauges, including their most popular version, Landau gauge. In this paper we will discuss a solution to this problems based on a redefinition of the kinematic momentum of the fermion.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Apratim Kaviraj

Abstract Many CFT problems, e.g. ones with global symmetries, have correlation functions with a crossing antisymmetric sector. We show that such a crossing antisymmetric function can be expanded in terms of manifestly crossing antisymmetric objects, which we call the ‘+ type Polyakov blocks’. These blocks are built from AdSd+1 Witten diagrams. In 1d they encode the ‘+ type’ analytic functionals which act on crossing antisymmetric functions. In general d we establish this Witten diagram basis from a crossing antisymmetric dispersion relation in Mellin space. Analogous to the crossing symmetric case, the dispersion relation imposes a set of independent ‘locality constraints’ in addition to the usual CFT sum rules given by the ‘Polyakov conditions’. We use the Polyakov blocks to simplify more general analytic functionals in d > 1 and global symmetry functionals.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Jie Zhang ◽  
Menquan Liu ◽  
Zhie Liu ◽  
Shuzheng Yang

AbstractThe Kinnersley spacetime not only describes a non-spherical symmetric, non-stationary and accelerating black hole, but also can be used to explore the characteristics of collision of two black holes because it has two horizons: the Rindler horizon and the event horizon. Previous research shows Rindler horizon and the event horizon cannot touch due to violation of the third law of thermodynamics. By solving a fermion dynamical equation including the Lorentz dispersion relation, we obtain a modified radiation temperature at the event horizon of the black hole, as well as the colliding temperature at the touch point of Rindler horizon and the event horizon. We find the temperature at the touch point is not equal to zero if $${\dot{r}}_H\ne 0$$ r ˙ H ≠ 0 . This result indicates that the event horizon and Rindler horizon can collide without violation of the third law of thermodynamics when Lorentz dispersion relation is considered.


Plasmonics ◽  
2021 ◽  
Author(s):  
Tom G. Mackay ◽  
Muhammad Faryad

AbstractA local minimum in the plot of linear reflectance versus angle of incidence, on its own, is insufficient to identify a surface-plasmon-polariton wave (SPPW). Further checks are required in order to confirm the identity of a SPPW. The wavenumber should be compared with that extracted from the dispersion relation for the corresponding canonical boundary-value problem. Also, for prism-coupled configurations such as the Turbadar–Otto configuration which are based on SPPW-excitation via evanescent waves, the angle of incidence should be greater than the critical angle needed for total internal reflection.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3243
Author(s):  
Ambreen Afsar Khan ◽  
Anum Dilshad ◽  
Mohammad Rahimi-Gorji ◽  
Mohammad Mahtab Alam

Considering the propagation of an SH wave at a corrugated interface between a monoclinic layer and heterogeneous half-space in the presence of initial stress. The inhomogeneity in the half-space is the causation of an exponential function of depth. Whittaker’s function is employed to find the half-space solution. The dispersion relation has been established in closed form. The special cases are discussed, and the classical Love wave equation is one of the special cases. The influence of nonhomogeneity parameter, coupling parameter, and depth of irregularity on the phase velocity was studied.


2021 ◽  
Vol 7 (50) ◽  
Author(s):  
Romik Khajehtourian ◽  
Mahmoud I. Hussein

Sign in / Sign up

Export Citation Format

Share Document