scholarly journals Flip bifurcations of an SIR epidemic model with birth pulse and pulse vaccination

2017 ◽  
Vol 43 ◽  
pp. 579-591 ◽  
Author(s):  
Xiangsen Liu ◽  
Binxiang Dai
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wencai Zhao ◽  
Juan Li ◽  
Xinzhu Meng

SIR epidemic model with nonlinear pulse vaccination and lifelong immunity is proposed. Due to the limited medical resources, vaccine immunization rate is considered as a nonlinear saturation function. Firstly, by using stroboscopic map and fixed point theory of difference equations, the existence of disease-free periodic solution is discussed, and the globally asymptotical stability of disease-free periodic solution is proven by using Floquet multiplier theory and differential impulsive comparison theorem. Moreover, by using the bifurcation theorem, sufficient condition for the existence of positive periodic solution is obtained by choosing impulsive vaccination period as a bifurcation parameter. Lastly, some simulations are given to validate the theoretical results.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Shujing Gao ◽  
Zhidong Teng ◽  
Juan J. Nieto ◽  
Angela Torres

Pulse vaccination, the repeated application of vaccine over a defined age range, is gaining prominence as an effective strategy for the elimination of infectious diseases. An SIR epidemic model with pulse vaccination and distributed time delay is proposed in this paper. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact infection-free periodic solution of the impulsive epidemic system and prove that the infection-free periodic solution is globally attractive if the vaccination rate is larger enough. Moreover, we show that the disease is uniformly persistent if the vaccination rate is less than some critical value. The permanence of the model is investigated analytically. Our results indicate that a large pulse vaccination rate is sufficient for the eradication of the disease.


Sign in / Sign up

Export Citation Format

Share Document