sir epidemic model
Recently Published Documents


TOTAL DOCUMENTS

476
(FIVE YEARS 186)

H-INDEX

36
(FIVE YEARS 7)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 165
Author(s):  
Zai-Yin He ◽  
Abderrahmane Abbes ◽  
Hadi Jahanshahi ◽  
Naif D. Alotaibi ◽  
Ye Wang

This research presents a new fractional-order discrete-time susceptible-infected-recovered (SIR) epidemic model with vaccination. The dynamical behavior of the suggested model is examined analytically and numerically. Through using phase attractors, bifurcation diagrams, maximum Lyapunov exponent and the 0−1 test, it is verified that the newly introduced fractional discrete SIR epidemic model vaccination with both commensurate and incommensurate fractional orders has chaotic behavior. The discrete fractional model gives more complex dynamics for incommensurate fractional orders compared to commensurate fractional orders. The reasonable range of commensurate fractional orders is between γ = 0.8712 and γ = 1, while the reasonable range of incommensurate fractional orders is between γ2 = 0.77 and γ2 = 1. Furthermore, the complexity analysis is performed using approximate entropy (ApEn) and C0 complexity to confirm the existence of chaos. Finally, simulations were carried out on MATLAB to verify the efficacy of the given findings.


2022 ◽  
Author(s):  
A. George Maria Selvam ◽  
D. Abraham Vianny ◽  
S. Britto Jacob ◽  
D. Vignesh

2022 ◽  
Vol 27 (1) ◽  
pp. 142-162
Author(s):  
Zhenzhen Lu ◽  
Yongguang Yu ◽  
Guojian Ren ◽  
Conghui Xu ◽  
Xiangyun Meng

This paper investigates the global dynamics for a class of multigroup SIR epidemic model with time fractional-order derivatives and reaction–diffusion. The fractional order considered in this paper is in (0; 1], which the propagation speed of this process is slower than Brownian motion leading to anomalous subdiffusion. Furthermore, the generalized incidence function is considered so that the data itself can flexibly determine the functional form of incidence rates in practice. Firstly, the existence, nonnegativity, and ultimate boundedness of the solution for the proposed system are studied. Moreover, the basic reproduction number R0 is calculated and shown as a threshold: the disease-free equilibrium point of the proposed system is globally asymptotically stable when R0 ≤ 1, while when R0 > 1, the proposed system is uniformly persistent, and the endemic equilibrium point is globally asymptotically stable. Finally, the theoretical results are verified by numerical simulation.


2022 ◽  
Author(s):  
A. George Maria Selvam ◽  
Mary Jacintha ◽  
D. Abraham Vianny ◽  
D. Vignesh

Author(s):  
Chandan Maji

In this work, we formulated and analyzed a fractional-order epidemic model of infectious disease (such as SARS, 2019-nCoV and COVID-19) concerning media effect. The model is based on classical susceptible-infected-recovered (SIR) model. Basic properties regarding positivity, boundedness and non-negative solutions are discussed. Basic reproduction number [Formula: see text] of the system has been calculated using next-generation matrix method and it is seen that the disease-free equilibrium is locally as well as globally asymptotically stable if [Formula: see text], otherwise unstable. The existence of endemic equilibrium point is established using the Lambert W function. The condition for global stability has been derived. Numerical simulation suggests that fractional order and media have a large effect on our system dynamics. When media impact is stronger enough, our fractional-order system stabilizes the oscillation.


Sign in / Sign up

Export Citation Format

Share Document