Bulletin of Mathematical Biology
Latest Publications


TOTAL DOCUMENTS

5177
(FIVE YEARS 417)

H-INDEX

95
(FIVE YEARS 9)

Published By Springer-Verlag

1522-9602, 0092-8240

2022 ◽  
Vol 84 (2) ◽  
Author(s):  
Xiaoli Sun ◽  
Shengqiang Liu ◽  
Yunfei Lv ◽  
Yongzhen Pei
Keyword(s):  

2022 ◽  
Vol 84 (2) ◽  
Author(s):  
Stephen J. Willson

AbstractAs phylogenetic networks grow increasingly complicated, systematic methods for simplifying them to reveal properties will become more useful. This paper considers how to modify acyclic phylogenetic networks into other acyclic networks by contracting specific arcs that include a set D. The networks need not be binary, so vertices in the networks may have more than two parents and/or more than two children. In general, in order to make the resulting network acyclic, additional arcs not in D must also be contracted. This paper shows how to choose D so that the resulting acyclic network is “pre-normal”. As a result, removal of all redundant arcs yields a normal network. The set D can be selected based only on the geometry of the network, giving a well-defined normal phylogenetic network depending only on the given network. There are CSD maps relating most of the networks. The resulting network can be visualized as a “wired lift” in the original network, which appears as the original network with each arc drawn in one of three ways.


2022 ◽  
Vol 84 (2) ◽  
Author(s):  
Linhua Zhou ◽  
Xinmiao Rong ◽  
Meng Fan ◽  
Liu Yang ◽  
Huidi Chu ◽  
...  

2022 ◽  
Vol 84 (2) ◽  
Author(s):  
Hayriye Gulbudak ◽  
Zhuolin Qu ◽  
Fabio Milner ◽  
Necibe Tuncer
Keyword(s):  

2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Guim Aguadé-Gorgorió ◽  
Stuart Kauffman ◽  
Ricard Solé

AbstractPhenotypic switching in cancer cells has been found to be present across tumor types. Recent studies on Glioblastoma report a remarkably common architecture of four well-defined phenotypes coexisting within high levels of intra-tumor genetic heterogeneity. Similar dynamics have been shown to occur in breast cancer and melanoma and are likely to be found across cancer types. Given the adaptive potential of phenotypic switching (PHS) strategies, understanding how it drives tumor evolution and therapy resistance is a major priority. Here we present a mathematical framework uncovering the ecological dynamics behind PHS. The model is able to reproduce experimental results, and mathematical conditions for cancer progression reveal PHS-specific features of tumors with direct consequences on therapy resistance. In particular, our model reveals a threshold for the resistant-to-sensitive phenotype transition rate, below which any cytotoxic or switch-inhibition therapy is likely to fail. The model is able to capture therapeutic success thresholds for cancers where nonlinear growth dynamics or larger PHS architectures are in place, such as glioblastoma or melanoma. By doing so, the model presents a novel set of conditions for the success of combination therapies able to target replication and phenotypic transitions at once. Following our results, we discuss transition therapy as a novel scheme to target not only combined cytotoxicity but also the rates of phenotypic switching.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
József Garay ◽  
Tamás F. Móri

AbstractWe consider matrix games with two phenotypes (players): one following a mixed evolutionarily stable strategy and another one that always plays a best reply against the action played by its opponent in the previous round (best reply player, BR). We focus on iterated games and well-mixed games with repetition (that is, the mean number of repetitions is positive, but not infinite). In both interaction schemes, there are conditions on the payoff matrix guaranteeing that the best reply player can replace the mixed ESS player. This is possible because best reply players in pairs, individually following their own selfish strategies, develop cycles where the bigger payoff can compensate their disadvantage compared with the ESS players. Well-mixed interaction is one of the basic assumptions of classical evolutionary matrix game theory. However, if the players repeat the game with certain probability, then they can react to their opponents’ behavior. Our main result is that the classical mixed ESS loses its general stability in the well-mixed population games with repetition in the sense that it can happen to be overrun by the BR player.


Sign in / Sign up

Export Citation Format

Share Document