Gradient-based multidisciplinary design optimization of an autonomous underwater vehicle

2018 ◽  
Vol 80 ◽  
pp. 101-111 ◽  
Author(s):  
Xu Chen ◽  
Peng Wang ◽  
Daiyu Zhang ◽  
Huachao Dong
Author(s):  
Mohsen Bidoki ◽  
Mehdi Mortazavi ◽  
Mehdi Sabzehparvar

The design process of an autonomous underwater vehicle requires mathematical model of subsystems or disciplines such as guidance and control, payload, hydrodynamic, propulsion, structure, trajectory and performance and their interactions. In early phases of design, an autonomous underwater vehicle is often encountered with a high degree of uncertainty in the design variables and parameters of system. These uncertainties present challenges to the design process and have a direct effect on the autonomous underwater vehicle performance. Multidisciplinary design optimization is an approach to find both optimum and feasible design, and robust design is an approach to make the system performance insensitive to variations of design variables and parameters. It is significant to integrate the robust design and the multidisciplinary design optimization for designing complex engineering systems in optimal, feasible and robust senses. In this article, we present an improved multidisciplinary design optimization methodology for conceptual design of an autonomous underwater vehicle in both engineering and tactic aspects under uncertainty. In this methodology, uncertain multidisciplinary feasible is introduced as uncertain multidisciplinary design optimization framework. The results of this research illustrate that the new proposed robust multidisciplinary design optimization framework can carefully set a robust design for an autonomous underwater vehicle with coupled uncertain disciplines.


2003 ◽  
Vol 47 (01) ◽  
pp. 1-12 ◽  
Author(s):  
Daniele Peri ◽  
Emilio F. Campana

Whereas shape optimal design has received considerable attention in many industrial contexts, the application of automatic optimization procedures to hydrodynamic ship design has not yet reached the same maturity. Nevertheless, numerical tools, combining together modern computational fluid dynamics and optimization methods, can aid in the ship design, enhancing the operational performances and reducing development and construction costs. This paper represents an attempt of applying a multidisciplinary design optimization (MDO) procedure to the enhancement of the performances of an existing ship. At the present stage the work involves modeling, development, and implementation of algorithms only for the hydrodynamic optimization. For a naval surface combatant, the David Taylor Model Basin (DTMB) model ship 5415, a three-objective functions optimization for a two-discipline design problem is devised and solved in the framework of the MDO approach. A simple decision maker is used to order the Pareto optimal solutions, and a gradient-based refinement is performed on the selected design.


Sign in / Sign up

Export Citation Format

Share Document