Deep reinforcement learning and parameter transfer based approach for the multi-objective agile earth observation satellite scheduling problem

2021 ◽  
pp. 107607
Author(s):  
Luona Wei ◽  
Yuning Chen ◽  
Ming Chen ◽  
Yingwu Chen
2018 ◽  
Vol 6 (5) ◽  
pp. 399-420
Author(s):  
Ye Zhang ◽  
Xiaoxuan Hu ◽  
Waiming Zhu ◽  
Peng Jin

Abstract This paper addresses the integrated Earth observation satellite scheduling problem. It is a complicated problem because observing and downloading operations are both involved. We use an acyclic directed graph model to describe the observing and downloading integrated scheduling problem. Based on the model which considering energy constraints and storage capacity constraints, we develop an efficient solving method using a novel quantum genetic algorithm. We design a new encoding and decoding scheme that can generate feasible solution and increase the diversity of the population. The results of the simulation experiments show that the proposed method solves the integrated Earth observation satellite scheduling problem with good performance and outperforms the genetic algorithm and greedy algorithm on all instances.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1430 ◽  
Author(s):  
Jintian Cui ◽  
Xin Zhang

Emergency observations are missions executed by Earth observation satellites to support urgent ground operations. Emergency observations become more important for meeting the requirements of highly dynamic and highly time-sensitive observation missions, such as disaster monitoring and early warning. Considering the complex scheduling problem of Earth observation satellites under emergency conditions, a multi-satellite dynamic mission scheduling model based on mission priority is proposed in this paper. A calculation model of mission priority is designed for emergency missions based on seven impact factors. In the satellite mission scheduling, the resource constraints of scheduling are analyzed in detail, and the optimization objective function is built to maximize the observation mission priority and mission revenues, and minimize the waiting time for missions that require urgency for execution time. Then, the hybrid genetic tabu search algorithm is used to obtain the initial satellite scheduling plan. In case of the dynamic arrival of new emergency missions before scheduling plan releases, a dynamic scheduling algorithm based on mission priority is proposed to solve the scheduling problem caused by newly arrived missions and to obtain the scheduling plan of newly arrived missions. A simulation experiment was conducted for different numbers of initial missions and newly arrived missions, and the scheduling results were evaluated with a model performance evaluation function. The results show that the execution probability of high-priority missions increased because the mission priority was taken into account in the model. In the case of more satellite resources, when new missions dynamically arrived, the satellite resources can be reasonably allocated to these missions based on the mission priority. Overall, this approach reduces the complexity of the dynamic adjustment and maintains the stability of the initial scheduling plan.


Sign in / Sign up

Export Citation Format

Share Document