future directions
Recently Published Documents


TOTAL DOCUMENTS

23708
(FIVE YEARS 10272)

H-INDEX

229
(FIVE YEARS 74)

2022 ◽  
Vol 54 (7) ◽  
pp. 1-35
Author(s):  
Uttam Chauhan ◽  
Apurva Shah

We are not able to deal with a mammoth text corpus without summarizing them into a relatively small subset. A computational tool is extremely needed to understand such a gigantic pool of text. Probabilistic Topic Modeling discovers and explains the enormous collection of documents by reducing them in a topical subspace. In this work, we study the background and advancement of topic modeling techniques. We first introduce the preliminaries of the topic modeling techniques and review its extensions and variations, such as topic modeling over various domains, hierarchical topic modeling, word embedded topic models, and topic models in multilingual perspectives. Besides, the research work for topic modeling in a distributed environment, topic visualization approaches also have been explored. We also covered the implementation and evaluation techniques for topic models in brief. Comparison matrices have been shown over the experimental results of the various categories of topic modeling. Diverse technical challenges and future directions have been discussed.


COVID-19 outbreak has created havoc around the world and has brought life to a disturbing halt claiming thousands of lives worldwide and infected cases rising every day. With technological advancements in Artificial Intelligence (AI), AI-based platforms can be used to deal with COVID-19 pandemic and accelerate the processes ranging from crowd surveillance to medical diagnosis. This paper renders a response to battle the virus through various AI techniques by making use of its subsets such as Machine Learning (ML), Deep learning (DL) and Natural Language Processing (NLP). A survey of promising AI methods which could be used in various applications to facilitate the processes in this pandemic along potential of AI and challenges imposed are discussed thoroughly. This paper relies on the findings of the most recent research publications and journals on COVID-19 and suggests numerous relevant strategies. A case study on the impact of COVID-19 in various economic sectors is also discussed. The potential research challenges and future directions are also presented in the paper.


2022 ◽  
Vol 81 ◽  
pp. 203-239
Author(s):  
Anil Rahate ◽  
Rahee Walambe ◽  
Sheela Ramanna ◽  
Ketan Kotecha

2022 ◽  
Vol 54 (8) ◽  
pp. 1-30
Author(s):  
Royson Lee ◽  
Stylianos I. Venieris ◽  
Nicholas D. Lane

Internet-enabled smartphones and ultra-wide displays are transforming a variety of visual apps spanning from on-demand movies and 360°  videos to video-conferencing and live streaming. However, robustly delivering visual content under fluctuating networking conditions on devices of diverse capabilities remains an open problem. In recent years, advances in the field of deep learning on tasks such as super-resolution and image enhancement have led to unprecedented performance in generating high-quality images from low-quality ones, a process we refer to as neural enhancement. In this article, we survey state-of-the-art content delivery systems that employ neural enhancement as a key component in achieving both fast response time and high visual quality. We first present the components and architecture of existing content delivery systems, highlighting their challenges and motivating the use of neural enhancement models as a countermeasure. We then cover the deployment challenges of these models and analyze existing systems and their design decisions in efficiently overcoming these technical challenges. Additionally, we underline the key trends and common approaches across systems that target diverse use-cases. Finally, we present promising future directions based on the latest insights from deep learning research to further boost the quality of experience of content delivery systems.


2022 ◽  
Vol 26 (2) ◽  
pp. 100981
Author(s):  
Ashitha Gopinath ◽  
Lakshmi Pisharody ◽  
Amishi Popat ◽  
P.V. Nidheesh

2022 ◽  
Vol 54 (9) ◽  
pp. 1-36
Author(s):  
Timothy McIntosh ◽  
A. S. M. Kayes ◽  
Yi-Ping Phoebe Chen ◽  
Alex Ng ◽  
Paul Watters

Although ransomware has been around since the early days of personal computers, its sophistication and aggression have increased substantially over the years. Ransomware, as a type of malware to extort ransom payments from victims, has evolved to deliver payloads in different attack vectors and on multiple platforms, and creating repeated disruptions and financial loss to many victims. Many studies have performed ransomware analysis and/or presented detection, defense, or prevention techniques for ransomware. However, because the ransomware landscape has evolved aggressively, many of those studies have become less relevant or even outdated. Previous surveys on anti-ransomware studies have compared the methods and results of the studies they surveyed, but none of those surveys has attempted to critique on the internal or external validity of those studies. In this survey, we first examined the up-to-date concept of ransomware, and listed the inadequacies in current ransomware research. We then proposed a set of unified metrics to evaluate published studies on ransomware mitigation, and applied the metrics to 118 such studies to comprehensively compare and contrast their pros and cons, with the attempt to evaluate their relative strengths and weaknesses. Finally, we forecast the future trends of ransomware evolution, and propose future research directions.


Author(s):  
Ayesha Ahmed ◽  
Prabadevi Boopathy ◽  
Sudhagara Rajan S.

COVID-19 outbreak has created havoc around the world and has brought life to a disturbing halt claiming thousands of lives worldwide and infected cases rising every day. With technological advancements in Artificial Intelligence (AI), AI-based platforms can be used to deal with COVID-19 pandemic and accelerate the processes ranging from crowd surveillance to medical diagnosis. This paper renders a response to battle the virus through various AI techniques by making use of its subsets such as Machine Learning (ML), Deep learning (DL) and Natural Language Processing (NLP). A survey of promising AI methods which could be used in various applications to facilitate the processes in this pandemic along potential of AI and challenges imposed are discussed thoroughly. This paper relies on the findings of the most recent research publications and journals on COVID-19 and suggests numerous relevant strategies. A case study on the impact of COVID-19 in various economic sectors is also discussed. The potential research challenges and future directions are also presented in the paper.


2022 ◽  
Vol 54 (9) ◽  
pp. 1-37
Author(s):  
Lingxi Xie ◽  
Xin Chen ◽  
Kaifeng Bi ◽  
Longhui Wei ◽  
Yuhui Xu ◽  
...  

Neural architecture search (NAS) has attracted increasing attention. In recent years, individual search methods have been replaced by weight-sharing search methods for higher search efficiency, but the latter methods often suffer lower instability. This article provides a literature review on these methods and owes this issue to the optimization gap . From this perspective, we summarize existing approaches into several categories according to their efforts in bridging the gap, and we analyze both advantages and disadvantages of these methodologies. Finally, we share our opinions on the future directions of NAS and AutoML. Due to the expertise of the authors, this article mainly focuses on the application of NAS to computer vision problems.


2022 ◽  
Vol 68 ◽  
pp. 101832
Author(s):  
Deniz Cemiloglu ◽  
Mohamed Basel Almourad ◽  
John McAlaney ◽  
Raian Ali

Sign in / Sign up

Export Citation Format

Share Document