scholarly journals Acceleration control strategy for aero-engines based on model-free deep reinforcement learning method

2021 ◽  
pp. 107248
Author(s):  
Wenbo Gao ◽  
Muxuan Pan ◽  
Wenxiang Zhou ◽  
Feng Lu ◽  
Jinquan Huang
2021 ◽  
Author(s):  
Yunfan Su

Vehicular ad hoc network (VANET) is a promising technique that improves traffic safety and transportation efficiency and provides a comfortable driving experience. However, due to the rapid growth of applications that demand channel resources, efficient channel allocation schemes are required to utilize the performance of the vehicular networks. In this thesis, two Reinforcement learning (RL)-based channel allocation methods are proposed for a cognitive enabled VANET environment to maximize a long-term average system reward. First, we present a model-based dynamic programming method, which requires the calculations of the transition probabilities and time intervals between decision epochs. After obtaining the transition probabilities and time intervals, a relative value iteration (RVI) algorithm is used to find the asymptotically optimal policy. Then, we propose a model-free reinforcement learning method, in which we employ an agent to interact with the environment iteratively and learn from the feedback to approximate the optimal policy. Simulation results show that our reinforcement learning method can acquire a similar performance to that of the dynamic programming while both outperform the greedy method.


2021 ◽  
Author(s):  
Yunfan Su

Vehicular ad hoc network (VANET) is a promising technique that improves traffic safety and transportation efficiency and provides a comfortable driving experience. However, due to the rapid growth of applications that demand channel resources, efficient channel allocation schemes are required to utilize the performance of the vehicular networks. In this thesis, two Reinforcement learning (RL)-based channel allocation methods are proposed for a cognitive enabled VANET environment to maximize a long-term average system reward. First, we present a model-based dynamic programming method, which requires the calculations of the transition probabilities and time intervals between decision epochs. After obtaining the transition probabilities and time intervals, a relative value iteration (RVI) algorithm is used to find the asymptotically optimal policy. Then, we propose a model-free reinforcement learning method, in which we employ an agent to interact with the environment iteratively and learn from the feedback to approximate the optimal policy. Simulation results show that our reinforcement learning method can acquire a similar performance to that of the dynamic programming while both outperform the greedy method.


2015 ◽  
Vol 787 ◽  
pp. 843-847
Author(s):  
Leo Raju ◽  
R.S. Milton ◽  
S. Sakthiyanandan

In this paper, two solar Photovoltaic (PV) systems are considered; one in the department with capacity of 100 kW and the other in the hostel with capacity of 200 kW. Each one has battery and load. The capital cost and energy savings by conventional methods are compared and it is proved that the energy dependency from grid is reduced in solar micro-grid element, operating in distributed environment. In the smart grid frame work, the grid energy consumption is further reduced by optimal scheduling of the battery, using Reinforcement Learning. Individual unit optimization is done by a model free reinforcement learning method, called Q-Learning and it is compared with distributed operations of solar micro-grid using a Multi Agent Reinforcement Learning method, called Joint Q-Learning. The energy planning is designed according to the prediction of solar PV energy production and observed load pattern of department and the hostel. A simulation model was developed using Python programming.


2019 ◽  
Vol 30 (8) ◽  
pp. 2515-2527 ◽  
Author(s):  
Hangkai Hu ◽  
Shiji Song ◽  
C. L. Phillip Chen

Author(s):  
Dingcui Huang ◽  
Jiangping Hu ◽  
Zhinan Peng ◽  
Bo Chen ◽  
Mingrui Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document