scholarly journals Mobility and function of Coenzyme Q (ubiquinone) in the mitochondrial respiratory chain

2009 ◽  
Vol 1787 (6) ◽  
pp. 563-573 ◽  
Author(s):  
Giorgio Lenaz ◽  
Maria Luisa Genova
1995 ◽  
Vol 41 (2) ◽  
pp. 217-219 ◽  
Author(s):  
A G Angelitti ◽  
L Colacicco ◽  
C Callà ◽  
M Arizzi ◽  
S Lippa

Abstract The concentration of coenzyme Q10 (CoQ10), a key intermediate of the mitochondrial respiratory chain, was determined in spermatozoa of 13 fertile subjects, 8 potentially fertile patients, and 12 infertile patients. CoQ10 concentrations were significantly higher (P < 0.001) in infertile patients than in fertile and potentially fertile subjects. The difference between potentially fertile and fertile subjects was also significant (P < 0.001). We propose that a decrease in consumption of CoQ10 in both infertile and potentially fertile populations is due to an autoregulatory mechanism of ATP production.


2007 ◽  
Vol 292 (4) ◽  
pp. C1221-C1239 ◽  
Author(s):  
Giorgio Lenaz ◽  
Maria Luisa Genova

Recent evidence, mainly based on native electrophoresis, has suggested that the mitochondrial respiratory chain is organized in the form of supercomplexes, due to the aggregation of the main respiratory chain enzymatic complexes. This evidence strongly contrasts the previously accepted model, the Random Diffusion Model, largely based on kinetic studies, stating that the complexes are randomly distributed in the lipid bilayer of the inner membrane and functionally connected by lateral diffusion of small redox molecules, i.e., coenzyme Q and cytochrome c. This review critically examines the experimental evidence, both structural and functional, pertaining to the two models and attempts to provide an updated view of the organization of the respiratory chain and of its kinetic consequences. The conclusion that structural respiratory assemblies exist is overwhelming, whereas the expected functional consequence of substrate channeling between the assembled enzymes is controversial. Examination of the available evidence suggests that, although the supercomplexes are structurally stable, their kinetic competence in substrate channeling is more labile and may depend on the system under investigation and the assay conditions.


Sign in / Sign up

Export Citation Format

Share Document