scholarly journals Structural insight into co-translational membrane protein folding

2020 ◽  
Vol 1862 (1) ◽  
pp. 183019 ◽  
Author(s):  
Grant A. Pellowe ◽  
Paula J. Booth
2007 ◽  
Vol 179 (7) ◽  
pp. 1333-1335 ◽  
Author(s):  
William R. Skach

Eukaryotic polytopic membrane proteins are cotranslationally inserted into the ER membrane by a multisubunit protein-conducting channel called the Sec61 translocon. Although most major translocon components have been identified and reconstituted, their stoichiometry and functional organization remain unknown. This has led to speculative and sometimes conflicting models describing how multiple transmembrane (TM) segments might be oriented and integrated during nascent polytopic protein biogenesis. Kida et al. (see p. 1441 of this issue) shed new insight into this area by demonstrating that functional translocons exhibit a remarkable flexibility by simultaneously accommodating at least two hydrophilic translocating peptides that are separated by multiple hydrophobic TMs. These surprising findings support an expanded role for the translocon in membrane protein biogenesis and require reassessment of current views based on a single small functional pore.


2018 ◽  
Vol 430 (4) ◽  
pp. 424-437 ◽  
Author(s):  
Robert E. Jefferson ◽  
Duyoung Min ◽  
Karolina Corin ◽  
Jing Yang Wang ◽  
James U. Bowie

PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151051 ◽  
Author(s):  
Axel Baumann ◽  
Silke Kerruth ◽  
Jörg Fitter ◽  
Georg Büldt ◽  
Joachim Heberle ◽  
...  

2021 ◽  
pp. 137-160
Author(s):  
Stephen H. White ◽  
Gunnar von Heijne ◽  
Donald M. Engelman

2013 ◽  
Vol 53 (supplement1-2) ◽  
pp. S176
Author(s):  
Kenichi Ataka ◽  
Joachim Heberle ◽  
Axel Baumann ◽  
Silke Kerruth ◽  
Ramona Schlesinger ◽  
...  

2017 ◽  
Vol 372 (1726) ◽  
pp. 20160214 ◽  
Author(s):  
Nathan H. Joh ◽  
Gevorg Grigoryan ◽  
Yibing Wu ◽  
William F. DeGrado

Ion transporters and channels are able to identify and act on specific substrates among myriads of ions and molecules critical to cellular processes, such as homeostasis, cell signalling, nutrient influx and drug efflux. Recently, we designed Rocker, a minimalist model for Zn 2+ /H + co-transport. The success of this effort suggests that de novo membrane protein design has now come of age so as to serve a key approach towards probing the determinants of membrane protein folding, assembly and function. Here, we review general principles that can be used to design membrane proteins, with particular reference to helical assemblies with transport function. We also provide new functional and NMR data that probe the dynamic mechanism of conduction through Rocker. This article is part of the themed issue ‘Membrane pores: from structure and assembly, to medicine and technology’.


2016 ◽  
Vol 44 (3) ◽  
pp. 802-809 ◽  
Author(s):  
Jim E. Horne ◽  
Sheena E. Radford

Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed.


Sign in / Sign up

Export Citation Format

Share Document