In silico study of action potential and QT interval shortening due to loss of inactivation of the cardiac rapid delayed rectifier potassium current

2004 ◽  
Vol 322 (2) ◽  
pp. 693-699 ◽  
Author(s):  
Henggui Zhang ◽  
Jules C. Hancox
Heart ◽  
2010 ◽  
Vol 97 (1) ◽  
pp. e2-e2
Author(s):  
Y. Cui ◽  
C. Wilson ◽  
S. Turner ◽  
S. Graham ◽  
N. McMahon ◽  
...  

2008 ◽  
Vol 108 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Adrienn Szabó ◽  
Norbert Szentandrássy ◽  
Péter Birinyi ◽  
Balázs Horváth ◽  
Gergely Szabó ◽  
...  

Background Despite the widespread clinical application of ropivacaine, there is little information on the cellular cardiac effects of the drug. In the current study, therefore, the concentration-dependent effects of ropivacaine on action potential morphology and the underlying ion currents were studied and compared with those of bupivacaine in isolated canine ventricular cardiomyocytes. Methods Action potentials were recorded from the enzymatically dispersed cells using sharp microelectrodes. Conventional patch clamp and action potential voltage clamp arrangements were used to study the effects of ropivacaine on transmembrane ion currents. Results Ropivacaine induced concentration- and frequency-dependent changes in action potential configuration, including shortening of the action potentials, reduction of their amplitude and maximum velocity of depolarization, suppression of early repolarization, and depression of plateau. Reduction in maximum velocity of depolarization was characterized with an EC50 value of 81 +/- 7 microm at 1 Hz. Qualitatively similar results were obtained with bupivacaine (EC50 = 47 +/- 3 microm). Under voltage clamp conditions, a variety of ion currents were blocked by ropivacaine: L-type calcium current (EC50 = 263 +/- 67 microm), transient outward current (EC50 = 384 +/- 75 microm), inward rectifier potassium current (EC50 = 372 +/- 35 microm), rapid delayed rectifier potassium current (EC50 = 303 +/- 47 microm), and slow delayed rectifier potassium current (EC50 = 106 +/- 18 microm). Conclusions Ropivacaine, similarly to bupivacaine, can modify cardiac action potentials and the underlying ion currents at concentrations higher than the usual therapeutic range. However, in cases of overdose, cardiac complications may be anticipated both during and after anesthesia due to the blockade of various ion currents.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 405 ◽  
Author(s):  
Irene Huang ◽  
Yu-Luan Hsu ◽  
Chien-Chang Chen ◽  
Mei-Fang Chen ◽  
Zhi-Hong Wen ◽  
...  

Memory retrieval dysfunction is a symptom of schizophrenia, autism spectrum disorder (ASD), and absence epilepsy (AE), as well as an early sign of Alzheimer’s disease. To date, few drugs have been reported to enhance memory retrieval. Here, we found that a coral-derived natural product, excavatolide-B (Exc-B), enhances contextual memory retrieval in both wild-type and Cav3.2−/− mice via repressing the delayed rectifier potassium current, thus lowering the threshold for action potential initiation and enhancing induction of long-term potentiation (LTP). The human CACNA1H gene encodes a T-type calcium channel (Cav3.2), and its mutation is associated with schizophrenia, ASD, and AE, which are all characterized by abnormal memory function. Our previous publication demonstrated that Cav3.2−/− mice exhibit impaired contextual-associated memory retrieval, whilst their retrieval of spatial memory and auditory cued memory remain intact. The effect of Exc-B on enhancing the retrieval of context-associated memory provides a hope for novel drug development.


2022 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
Henry Sutanto

The excitation, contraction, and relaxation of an atrial cardiomyocyte are maintained by the activation and inactivation of numerous cardiac ion channels. Their collaborative efforts cause time-dependent changes of membrane potential, generating an action potential (AP), which is a surrogate marker of atrial arrhythmias. Recently, computational models of atrial electrophysiology emerged as a modality to investigate arrhythmia mechanisms and to predict the outcome of antiarrhythmic therapies. However, the individual contribution of atrial ion channels on atrial action potential and reentrant arrhythmia is not yet fully understood. Thus, in this multiscale in-silico study, perturbations of individual atrial ionic currents (INa, Ito, ICaL, IKur, IKr, IKs, IK1, INCX and INaK) in two in-silico models of human atrial cardiomyocyte (i.e., Courtemanche-1998 and Grandi-2011) were performed at both cellular and tissue levels. The results show that the inhibition of ICaL and INCX resulted in AP shortening, while the inhibition of IKur, IKr, IKs, IK1 and INaK prolonged AP duration (APD). Particularly, in-silico perturbations (inhibition and upregulation) of IKr and IKs only minorly affected atrial repolarization in the Grandi model. In contrast, in the Courtemanche model, the inhibition of IKr and IKs significantly prolonged APD and vice versa. Additionally, a 50% reduction of Ito density abbreviated APD in the Courtemanche model, while the same perturbation prolonged APD in the Grandi model. Similarly, a strong model dependence was also observed at tissue scale, with an observable IK1-mediated reentry stabilizing effect in the Courtemanche model but not in the Grandi atrial model. Moreover, the Grandi model was highly sensitive to a change on intracellular Ca2+ concentration, promoting a repolarization failure in ICaL upregulation above 150% and facilitating reentrant spiral waves stabilization by ICaL inhibition. Finally, by incorporating the previously published atrial fibrillation (AF)-associated ionic remodeling in the Courtemanche atrial model, in-silico modeling revealed the antiarrhythmic effect of IKr inhibition in both acute and chronic settings. Overall, our multiscale computational study highlights the strong model-dependent effects of ionic perturbations which could affect the model’s accuracy, interpretability, and prediction. This observation also suggests the need for a careful selection of in-silico models of atrial electrophysiology to achieve specific research aims.


Sign in / Sign up

Export Citation Format

Share Document