action potential repolarization
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
David Kelly Jones

Abstract Cardiac hERG channels comprise at least two subunits, hERG 1a and hERG 1b, and drive cardiac action potential repolarization. hERG 1a subunits contain a cytoplasmic PAS domain that is absent in hERG 1b. The hERG 1a PAS domain regulates voltage sensor domain (VSD) movement, but hERG VSD behavior and its regulation by the hERG 1a PAS domain have not been studied at physiological temperatures. We recorded gating charge from homomeric hERG 1a and heteromeric hERG 1a/1b channels at near physiological temperatures (36 ± 1°C) using pulse durations comparable in length to the human ventricular action potential. The voltage dependence of deactivation was hyperpolarized relative to activation, reflecting VSD relaxation at positive potentials. These data suggest that relaxation (hysteresis) works to delay pore closure during repolarization. Interestingly, hERG 1a VSD deactivation displayed a double Boltzmann distribution, but hERG 1a/1b deactivation displayed a single Boltzmann. Disabling the hERG1a PAS domain using a PAS-targeting antibody similarly transformed hERG 1a deactivation from a double to a single Boltzmann, highlighting the contribution of the PAS in regulating VSD movement. These data represent, to our knowledge, the first recordings of hERG gating charge at physiological temperature and demonstrate that VSD relaxation (hysteresis) is present in hERG channels at physiological temperature.


2021 ◽  
Author(s):  
Luna Gao ◽  
Jian Zhao ◽  
Evan L. Ardiel ◽  
Qi Hall ◽  
Stephen Nurrish ◽  
...  

Mutations altering the scaffolding protein Shank are linked to several psychiatric disorders, and to synaptic and behavioral defects in mice. Among its many binding partners, Shank directly binds CaV1 voltage activated calcium channels. Here we show that the C. elegans SHN-1/Shank promotes CaV1 coupling to calcium activated potassium channels. Mutations inactivating SHN-1, and those preventing SHN-1 binding to EGL-19/CaV1 all increase action potential durations in body muscles. Action potential repolarization is mediated by two classes of potassium channels: SHK-1/KCNA and SLO-1 and SLO-2 BK channels. BK channels are calcium-dependent, and their activation requires tight coupling to EGL-19/CaV1 channels. SHN-1’s effects on AP duration are mediated by changes in BK channels. In shn-1 mutants, SLO-2 currents and channel clustering are significantly decreased in both body muscles and neurons. Finally, increased and decreased shn-1 gene copy number produce similar changes in AP width and SLO-2 current. Collectively, these results suggest that an important function of Shank is to promote nanodomain coupling of BK with CaV1.


Toxins ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 407
Author(s):  
José Beltrán-Vidal ◽  
Edson Carcamo-Noriega ◽  
Nina Pastor ◽  
Fernando Zamudio-Zuñiga ◽  
Jimmy Alexander Guerrero-Vargas ◽  
...  

The Colombian scorpion Centruroides margaritatus produces a venom considered of low toxicity. Nevertheless, there are known cases of envenomation resulting in cardiovascular disorders, probably due to venom components that target ion channels. Among them, the humanether-à-go-go-Related gene (hERG1) potassium channels are critical for cardiac action potential repolarization and alteration in its functionality are associated with cardiac disorders. This work describes the purification and electrophysiological characterization of a Centruroides margaritatus venom component acting on hERG1 channels, the CmERG1 toxin. This novel peptide is composed of 42 amino acids with a MW of 4792.88 Da, folded by four disulfide bonds and it is classified as member number 10 of the γ-KTx1 toxin family. CmERG1 inhibits hERG1 currents with an IC50 of 3.4 ± 0.2 nM. Despite its 90.5% identity with toxin ɣ-KTx1.1, isolated from Centruroides noxius, CmERG1 completely blocks hERG1 current, suggesting a more stable plug of the hERG channel, compared to that formed by other ɣ-KTx.


2021 ◽  
Vol 118 (20) ◽  
pp. e2024215118
Author(s):  
Yangyang Lin ◽  
Sam Z. Grinter ◽  
Zhongju Lu ◽  
Xianjin Xu ◽  
Hong Zhan Wang ◽  
...  

Cardiac arrhythmias are the most common cause of sudden cardiac death worldwide. Lengthening the ventricular action potential duration (APD), either congenitally or via pathologic or pharmacologic means, predisposes to a life-threatening ventricular arrhythmia, Torsade de Pointes. IKs (KCNQ1+KCNE1), a slowly activating K+ current, plays a role in action potential repolarization. In this study, we screened a chemical library in silico by docking compounds to the voltage-sensing domain (VSD) of the IKs channel. Here, we show that C28 specifically shifted IKs VSD activation in ventricle to more negative voltages and reversed the drug-induced lengthening of APD. At the same dosage, C28 did not cause significant changes of the normal APD in either ventricle or atrium. This study provides evidence in support of a computational prediction of IKs VSD activation as a potential therapeutic approach for all forms of APD prolongation. This outcome could expand the therapeutic efficacy of a myriad of currently approved drugs that may trigger arrhythmias.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dina Simkin ◽  
Kelly A Marshall ◽  
Carlos G Vanoye ◽  
Reshma R Desai ◽  
Bernabe I Bustos ◽  
...  

Mutations in KCNQ2, which encodes a pore-forming K+ channel subunit responsible for neuronal M-current, cause neonatal epileptic encephalopathy, a complex disorder presenting with severe early-onset seizures and impaired neurodevelopment. The condition is exceptionally difficult to treat, partially because the effects of KCNQ2 mutations on the development and function of human neurons are unknown. Here, we used induced pluripotent stem cells (iPSCs) and gene editing to establish a disease model and measured the functional properties of differentiated excitatory neurons. We find that patient iPSC-derived neurons exhibit faster action potential repolarization, larger post-burst afterhyperpolarization and a functional enhancement of Ca2+-activated K+ channels. These properties, which can be recapitulated by chronic inhibition of M-current in control neurons, facilitate a burst-suppression firing pattern that is reminiscent of the interictal electroencephalography pattern in patients. Our findings suggest that dyshomeostatic mechanisms compound KCNQ2 loss-of-function leading to alterations in the neurodevelopmental trajectory of patient iPSC-derived neurons.


Brain ◽  
2020 ◽  
Vol 143 (10) ◽  
pp. 3025-3040 ◽  
Author(s):  
Andrew M Tidball ◽  
Luis F Lopez-Santiago ◽  
Yukun Yuan ◽  
Trevor W Glenn ◽  
Joshua L Margolis ◽  
...  

Abstract Missense variants in the SCN8A voltage-gated sodium channel gene are linked to early-infantile epileptic encephalopathy type 13, also known as SCN8A-related epilepsy. These patients exhibit a wide spectrum of intractable seizure types, severe developmental delay, movement disorders, and elevated risk of sudden unexpected death in epilepsy. The mechanisms by which SCN8A variants lead to epilepsy are poorly understood, although heterologous expression systems and mouse models have demonstrated altered sodium current properties. To investigate these mechanisms using a patient-specific model, we generated induced pluripotent stem cells from three patients with missense variants in SCN8A: p.R1872>L (Patient 1); p.V1592>L (Patient 2); and p.N1759>S (Patient 3). Using small molecule differentiation into excitatory neurons, induced pluripotent stem cell-derived neurons from all three patients displayed altered sodium currents. Patients 1 and 2 had elevated persistent current, while Patient 3 had increased resurgent current compared to controls. Neurons from all three patients displayed shorter axon initial segment lengths compared to controls. Further analyses focused on one of the patients with increased persistent sodium current (Patient 1) and the patient with increased resurgent current (Patient 3). Excitatory cortical neurons from both patients had prolonged action potential repolarization. Using doxycycline-inducible expression of the neuronal transcription factors neurogenin 1 and 2 to synchronize differentiation of induced excitatory cortical-like neurons, we investigated network activity and response to pharmacotherapies. Both small molecule differentiated and induced patient neurons displayed similar abnormalities in action potential repolarization. Patient induced neurons showed increased burstiness that was sensitive to phenytoin, currently a standard treatment for SCN8A-related epilepsy patients, or riluzole, an FDA-approved drug used in amyotrophic lateral sclerosis and known to block persistent and resurgent sodium currents, at pharmacologically relevant concentrations. Patch-clamp recordings showed that riluzole suppressed spontaneous firing and increased the action potential firing threshold of patient-derived neurons to more depolarized potentials. Two of the patients in this study were prescribed riluzole off-label. Patient 1 had a 50% reduction in seizure frequency. Patient 3 experienced an immediate and dramatic seizure reduction with months of seizure freedom. An additional patient with a SCN8A variant in domain IV of Nav1.6 (p.V1757>I) had a dramatic reduction in seizure frequency for several months after starting riluzole treatment, but then seizures recurred. Our results indicate that patient-specific neurons are useful for modelling SCN8A-related epilepsy and demonstrate SCN8A variant-specific mechanisms. Moreover, these findings suggest that patient-specific neuronal disease modelling offers a useful platform for discovering precision epilepsy therapies.


2020 ◽  
Vol 27 (18) ◽  
pp. 3046-3054
Author(s):  
Xiaomeng Zhang ◽  
Beilei Wang ◽  
Zhenzhen Liu ◽  
Yubin Zhou ◽  
Lupei Du

hERG (Human ether-a-go-go-related gene) potassium channel, which plays an essential role in cardiac action potential repolarization, is responsible for inherited and druginduced long QT syndrome. Recently, the Cryo-EM structure capturing the open conformation of hERG channel was determined, thus pushing the study on hERG channel at 3.8 Å resolution. This report focuses primarily on summarizing the design rationale and application of several fluorescent probes that target hERG channels, which enables dynamic and real-time monitoring of potassium pore channel affinity to further advance the understanding of the channels.


2020 ◽  
Vol 116 (9) ◽  
pp. 1542-1556 ◽  
Author(s):  
Lia Crotti ◽  
Katja E Odening ◽  
Michael C Sanguinetti

Abstract Cardiomyocytes express a surprisingly large number of potassium channel types. The primary physiological functions of the currents conducted by these channels are to maintain the resting membrane potential and mediate action potential repolarization under basal conditions and in response to changes in the concentrations of intracellular sodium, calcium, and ATP/ADP. Here, we review the diversity and functional roles of cardiac potassium channels under normal conditions and how heritable mutations in the genes encoding these channels can lead to distinct arrhythmias. We briefly review atrial fibrillation and J-wave syndromes. For long and short QT syndromes, we describe their genetic basis, clinical manifestation, risk stratification, traditional and novel therapeutic approaches, as well as insights into disease mechanisms provided by animal and cellular models.


Sign in / Sign up

Export Citation Format

Share Document