delayed rectifier
Recently Published Documents


TOTAL DOCUMENTS

1329
(FIVE YEARS 122)

H-INDEX

87
(FIVE YEARS 5)

Author(s):  
Zhaoyang Zhang ◽  
Peng-Sheng Chen ◽  
James N. Weiss ◽  
Zhilin Qu

Background: Three types of characteristic ST-segment elevation are associated with Brugada syndrome but only type 1 is diagnostic. Why only type 1 ECG is diagnostic remains unanswered. Methods: Computer simulations were performed in single cells, 1-dimensional cables, and 2-dimensional tissues to investigate the effects of the peak and late components of the transient outward potassium current (I to ), sodium current, and L-type calcium current (I Ca,L ) as well as other potassium currents on the genesis of ECG morphologies and phase 2 reentry (P2R). Results: Although a sufficiently large peak I to was required to result in the type 1 ECG pattern and P2R, increasing the late component of I to converted type 1 ECG to type 2 ECG and suppressed P2R. Increasing the peak I to promoted spiral wave breakup, potentiating the transition from tachycardia to fibrillation, but increasing the late I to prevented spiral wave breakup by flattening the action potential duration restitution and preventing P2R. A sufficiently large I Ca,L conductance was needed for P2R to occur, but once above the critical conductance, blocking I Ca,L promoted P2R. However, selectively blocking the window and late components of I Ca,L suppressed P2R, countering the effect of the late I to . Blocking either the peak or late components of sodium current promoted P2R, with the late sodium current blockade having the larger effect. As expected, increasing other potassium currents potentiated P2R, with ATP-sensitive potassium current exhibiting a larger effect than rapid and slow component of the delayed rectifier potassium current. Conclusions: The peak I to promotes type 1 ECG and P2R, whereas the late I to converts type 1 ECG to type 2 ECG and suppresses P2R. Blocking the peak I Ca,L and either the peak or the late sodium current promotes P2R, whereas blocking the window and late I Ca,L suppresses P2R. These results provide important insights into the mechanisms of arrhythmogenesis and potential therapeutic targets for treatment of Brugada syndrome.


2021 ◽  
Author(s):  
Mengyan Wei ◽  
Pu Wang ◽  
Xiufang Zhu ◽  
Yangong Liu ◽  
Mingqi Zheng ◽  
...  

Abstract Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non–small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous expression system in HEK293 cells, hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-expressing HEK293 cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption that alters the electrical excitability of cells.


2021 ◽  
Author(s):  
Amy Richardson ◽  
Victoria Ciampani ◽  
Mihai Stancu ◽  
Sherylanne Newton ◽  
Joern R. Steinert ◽  
...  

Kv3 potassium currents mediate rapid repolarization of action potentials (AP), supporting fast spikes and high repetition rates. Of the four Kv3 gene family members, Kv3.1 and Kv3.3 are highly expressed in the auditory brainstem and we exploited this to test for subunit-specific roles at the calyx of Held presynaptic terminal. Deletion of Kv3.3 (but not Kv3.1) increased presynaptic AP duration and facilitated transmitter release, which in turn enhanced short-term depression during high frequency transmission. The response to sound was delayed in the Kv3.3KO, with higher spontaneous and lower evoked firing, thereby reducing signal-to-noise ratio. Computational modelling showed that the enhanced EPSC and short-term depression in the Kv3.3KO reflected increased vesicle release probability and accelerated activity-dependent vesicle replenishment. We conclude that Kv3.3 is the presynaptic delayed rectifier, enabling short duration, precisely timed APs to maintain transmission at high frequencies and during sustained synaptic activity.


Author(s):  
Jari M. Tuomi ◽  
Loryn J. Bohne ◽  
Tristan W. Dorey ◽  
Hailey J. Jansen ◽  
Yingjie Liu ◽  
...  

Background Ibrutinib and acalabrutinib are Bruton tyrosine kinase inhibitors used in the treatment of B‐cell lymphoproliferative disorders. Ibrutinib is associated with new‐onset atrial fibrillation. Cases of sinus bradycardia and sinus arrest have also been reported following ibrutinib treatment. Conversely, acalabrutinib is less arrhythmogenic. The basis for these different effects is unclear. Methods and Results The effects of ibrutinib and acalabrutinib on atrial electrophysiology were investigated in anesthetized mice using intracardiac electrophysiology, in isolated atrial preparations using high‐resolution optical mapping, and in isolated atrial and sinoatrial node (SAN) myocytes using patch‐clamping. Acute delivery of acalabrutinib did not affect atrial fibrillation susceptibility or other measures of atrial electrophysiology in mice in vivo. Optical mapping demonstrates that ibrutinib dose‐dependently impaired atrial and SAN conduction and slowed beating rate. Acalabrutinib had no effect on atrial and SAN conduction or beating rate. In isolated atrial myocytes, ibrutinib reduced action potential upstroke velocity and Na + current. In contrast, acalabrutinib had no effects on atrial myocyte upstroke velocity or Na + current. Both drugs increased action potential duration, but these effects were smaller for acalabrutinib compared with ibrutinib and occurred by different mechanisms. In SAN myocytes, ibrutinib impaired spontaneous action potential firing by inhibiting the delayed rectifier K + current, while acalabrutinib had no effects on SAN myocyte action potential firing. Conclusions Ibrutinib and acalabrutinib have distinct effects on atrial electrophysiology and ion channel function that provide insight into the basis for increased atrial fibrillation susceptibility and SAN dysfunction with ibrutinib, but not with acalabrutinib.


2021 ◽  
Author(s):  
Jaakko Haverinen ◽  
Minna Hassinen ◽  
Matti Vornanen

ABSTRACTIn cardiac myocytes, the slow component of the delayed rectifier K+ current (IKs) ensures repolarization of action potential during beta-adrenergic activation or when other repolarizing K+ currents fail. As a key factor of cardiac repolarization IKs should be present in model species used for cardiovascular drug screening, preferably with pharmacological characteristics similar to those of the human IKs. To this end, we investigated the effects of inhibitors and activators of the IKs on KCNQ1 and KCNQ1+KCNE1 channels of the zebrafish, an important model species, in Chinese hamster ovary cells. Inhibitors of IKs, chromanol 293B and HMR-1556, inhibited zebrafish IKs channels with approximately similar potency as that of mammalian IKs. Chromanol 293B concentration for half-maximal inhibition (IC50) of zebrafish IKs was at 13.1±5.8 and 13.4±2.8 μM for KCNQ1 and KCNQ1+KCNE1 channels, respectively. HMR-1556 was a more potent inhibitor of zebrafish IKs with IC50=0.1±0.1 μM and 1.5±0.8 μM for KCNQ1 and KCNQ1+KCNE1 channels, respectively. R-L3 and mefenamic acid, generally identified as IKs activators, both inhibited zebrafish IKs. R-L3 almost completely inhibited zebrafish IKs generated by KCNQ1 and KCNQ1+KCNE1 channels with similar affinity (IC50 1.1±0.4 and 1.0±0.4 μM, respectively). Mefenamic acid partially blocked zebrafish KCNQ1 (IC50=9.5±4.8 μM) and completely blocked KCNQ1+KCNE1 channels (IC50=3.3±1.8 μM). Although zebrafish IKs responds to IKs inhibitors in the same way as mammalian IKs, its response to activators is atypical, probably due to the differences in the binding domain of KCNE1 to KCNQ1. Therefore, care must be taken when translating the results from zebrafish to humans.


2021 ◽  
Vol 22 (20) ◽  
pp. 11249
Author(s):  
Md. Kamrul Hasan Chowdhury ◽  
Laura Martinez-Mateu ◽  
Jenny Do ◽  
Kelly A. Aromolaran ◽  
Javier Saiz ◽  
...  

In the heart, the delayed rectifier K current, IK, composed of the rapid (IKr) and slow (IKs) components contributes prominently to normal cardiac repolarization. In lipotoxicity, chronic elevation of pro-inflammatory cytokines may remodel IK, elevating the risk for ventricular arrythmias and sudden cardiac death. We investigated whether and how the pro-inflammatory interleukin-6 altered IK in the heart, using electrophysiology to evaluate changes in IK in adult guinea pig ventricular myocytes. We found that palmitic acid (a potent inducer of lipotoxicity), induced a rapid (~24 h) and significant increase in IL-6 in RAW264.7 cells. PA-diet fed guinea pigs displayed a severely prolonged QT interval when compared to low-fat diet fed controls. Exposure to isoproterenol induced torsade de pointes, and ventricular fibrillation in lipotoxic guinea pigs. Pre-exposure to IL-6 with the soluble IL-6 receptor produced a profound depression of IKr and IKs densities, prolonged action potential duration, and impaired mitochondrial ATP production. Only with the inhibition of IKr did a proarrhythmic phenotype of IKs depression emerge, manifested as a further prolongation of action potential duration and QT interval. Our data offer unique mechanistic insights with implications for pathological QT interval in patients and vulnerability to fatal arrhythmias.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yoon-Sil Yang ◽  
Joon Ho Choi ◽  
Jong-Cheol Rah

AbstractHypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sridevi Nagaraja ◽  
Luis F. Queme ◽  
Megan C. Hofmann ◽  
Shivendra G. Tewari ◽  
Michael P. Jankowski ◽  
...  

Nociceptive nerve endings embedded in muscle tissue transduce peripheral noxious stimuli into an electrical signal [i.e., an action potential (AP)] to initiate pain sensations. A major contributor to nociception from the muscles is mechanosensation. However, due to the heterogeneity in the expression of proteins, such as ion channels, pumps, and exchangers, on muscle nociceptors, we currently do not know the relative contributions of different proteins and signaling molecules to the neuronal response due to mechanical stimuli. In this study, we employed an integrated approach combining a customized experimental study in mice with a computational model to identify key proteins that regulate mechanical nociception in muscles. First, using newly collected data from somatosensory recordings in mouse hindpaw muscles, we developed and then validated a computational model of a mechanosensitive mouse muscle nociceptor. Next, by performing global sensitivity analyses that simulated thousands of nociceptors, we identified three ion channels (among the 17 modeled transmembrane proteins and four endoplasmic reticulum proteins) as potential regulators of the nociceptor response to mechanical forces in both the innocuous and noxious range. Moreover, we found that simulating single knockouts of any of the three ion channels, delayed rectifier voltage-gated K+ channel (Kv1.1) or mechanosensitive channels Piezo2 or TRPA1, considerably altered the excitability of the nociceptor (i.e., each knockout increased or decreased the number of triggered APs compared to when all channels were present). These results suggest that altering expression of the gene encoding Kv1.1, Piezo2, or TRPA1 might regulate the response of mechanosensitive muscle nociceptors.


Sign in / Sign up

Export Citation Format

Share Document