scholarly journals Design Principles of Pleiotropic G-Protein Signaling through Guanine Nucleotide Exchange Modulators (GEMs)

2017 ◽  
Vol 112 (3) ◽  
pp. 282a
Author(s):  
Michael Getz ◽  
Pradipta Ghosh ◽  
Padmini Rangamani
2017 ◽  
Vol 114 (48) ◽  
pp. E10319-E10328 ◽  
Author(s):  
Anthony Leyme ◽  
Arthur Marivin ◽  
Marcin Maziarz ◽  
Vincent DiGiacomo ◽  
Maria P. Papakonstantinou ◽  
...  

Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.


2015 ◽  
Author(s):  
Rob J Stanley ◽  
Geraint MH Thomas

G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an 'activation/inactivation cycle'. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity -- emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a 'balance/imbalance' mechanism. This result has implications for the understanding of many intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems.


2012 ◽  
Vol 288 (5) ◽  
pp. 3003-3015 ◽  
Author(s):  
Sukru Sadik Oner ◽  
Ellen M. Maher ◽  
Meital Gabay ◽  
Gregory G. Tall ◽  
Joe B. Blumer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document