g protein activation
Recently Published Documents


TOTAL DOCUMENTS

451
(FIVE YEARS 50)

H-INDEX

55
(FIVE YEARS 4)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Giuseppe Deganutti ◽  
Yi-Lynn Liang ◽  
Xin Zhang ◽  
Maryam Khoshouei ◽  
Lachlan Clydesdale ◽  
...  

AbstractThe glucagon-like peptide-1 receptor (GLP-1R) has broad physiological roles and is a validated target for treatment of metabolic disorders. Despite recent advances in GLP-1R structure elucidation, detailed mechanistic understanding of how different peptides generate profound differences in G protein-mediated signalling is still lacking. Here we combine cryo-electron microscopy, molecular dynamics simulations, receptor mutagenesis and pharmacological assays, to interrogate the mechanism and consequences of GLP-1R binding to four peptide agonists; glucagon-like peptide-1, oxyntomodulin, exendin-4 and exendin-P5. These data reveal that distinctions in peptide N-terminal interactions and dynamics with the GLP-1R transmembrane domain are reciprocally associated with differences in the allosteric coupling to G proteins. In particular, transient interactions with residues at the base of the binding cavity correlate with enhanced kinetics for G protein activation, providing a rationale for differences in G protein-mediated signalling efficacy from distinct agonists.


Author(s):  
Xuehua Xu ◽  
Wei Quan ◽  
Fengkai Zhang ◽  
Tian Jin

A GPCR-mediated signaling network enables a chemotactic cell to generate adaptative Ras signaling in response to a large range of concentrations of a chemoattractant. To explore potential regulatory mechanisms of GPCR-controlled Ras signaling in chemosensing, we applied a software package, Simmune, to construct detailed spatiotemporal models simulating responses of the cAR1-mediated Ras signaling network. We first determined dynamics of G-protein activation and Ras signaling in Dictyostelium cells in response to cAMP stimulations using live-cell imaging and then constructed computation models by incorporating potential mechanisms. Using simulations, we validated the dynamics of signaling events and predicted the dynamic profiles of those events in the cAR1-mediated Ras signaling networks with defective Ras inhibitory mechanisms, such as without RasGAP, with RasGAP overexpression, or RasGAP hyperactivation. We described a method of using Simmune to construct spatiotemporal models of a signaling network and run computational simulations without writing mathematical equations. This approach will help biologists to develop and analyze computational models that parallel live-cell experiments.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Kota Katayama ◽  
Kohei Suzuki ◽  
Ryoji Suno ◽  
Ryoji Kise ◽  
Hirokazu Tsujimoto ◽  
...  

AbstractThe intrinsic efficacy of ligand binding to G protein-coupled receptors (GPCRs) reflects the ability of the ligand to differentially activate its receptor to cause a physiological effect. Here we use attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to examine the ligand-dependent conformational changes in the human M2 muscarinic acetylcholine receptor (M2R). We show that different ligands affect conformational alteration appearing at the C=O stretch of amide-I band in M2R. Notably, ATR-FTIR signals strongly correlated with G-protein activation levels in cells. Together, we propose that amide-I band serves as an infrared probe to distinguish the ligand efficacy in M2R and paves the path to rationally design ligands with varied efficacy towards the target GPCR.


Nature ◽  
2021 ◽  
Author(s):  
Alpay B. Seven ◽  
Ximena Barros-Álvarez ◽  
Marine de Lapeyrière ◽  
Makaía M. Papasergi-Scott ◽  
Michael J. Robertson ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marjorie Damian ◽  
Maxime Louet ◽  
Antoniel Augusto Severo Gomes ◽  
Céline M’Kadmi ◽  
Séverine Denoyelle ◽  
...  

AbstractThe membrane is an integral component of the G protein-coupled receptor signaling machinery. Here we demonstrate that lipids regulate the signaling efficacy and selectivity of the ghrelin receptor GHSR through specific interactions and bulk effects. We find that PIP2 shifts the conformational equilibrium of GHSR away from its inactive state, favoring basal and agonist-induced G protein activation. This occurs because of a preferential binding of PIP2 to specific intracellular sites in the receptor active state. Another lipid, GM3, also binds GHSR and favors G protein activation, but mostly in a ghrelin-dependent manner. Finally, we find that not only selective interactions but also the thickness of the bilayer reshapes the conformational repertoire of GHSR, with direct consequences on G protein selectivity. Taken together, this data illuminates the multifaceted role of the membrane components as allosteric modulators of how ghrelin signal could be propagated.


Author(s):  
Hasnat Ali Abid ◽  
Asuka Inoue ◽  
Caroline M. Gorvin

The calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that plays a fundamental role in extracellular calcium (Ca2+e) homeostasis by regulating parathyroid hormone release and urinary calcium excretion. The CaSR has been described to activate all four G-protein subfamilies (Gαq/11, Gαi/o, Gα12/13, Gαs), and mutations in the receptor that cause hyper/hypocalcaemia, have been described to bias receptor signalling. However, many of these studies are based on measurements of second messenger proteins or gene transcription that occurs many steps downstream of receptor activation and can represent convergence points of several signalling pathways. Therefore, to assess CaSR-mediated G-protein activation directly, we took advantage of a recently described NanoBiT G-protein dissociation assay system. Our studies, performed in HEK293 cells stably expressing CaSR, demonstrate that Ca2+e stimulation activates all Gαq/11 family and several Gαi/o family proteins, although Gαz was not activated. CaSR stimulated dissociation of Gα12/13 and Gαs from Gβ-subunits, but this occurred at a slower rate than that of other Gα-subunits. Investigation of cDNA expression of G-proteins in three tissues abundantly expressing CaSR, the parathyroids, kidneys and pancreas, showed Gα11, Gαz, Gαi1 and Gα13 genes were highly expressed in parathyroid tissue, indicating CaSR most likely activates Gα11 and Gαi1 in parathyroids. In kidney and pancreas, the majority of G-proteins were similarly expressed, suggesting CaSR may activate multiple G-proteins in these cells. Thus, these studies validate a single assay system that can be used to robustly assess CaSR variants and biased signalling and could be utilised in the development of new pharmacological compounds targeting CaSR.


2021 ◽  
Author(s):  
Kota Katayama ◽  
Kohei Suzuki ◽  
Ryoji Suno ◽  
Ryoji Kise ◽  
Hirokazu Tsujimoto ◽  
...  

Abstract The intrinsic efficacy of ligand binding to G protein-coupled receptors (GPCRs) reflects the ability of the ligand to differentially activate its receptor to cause a physiological effect. Here we use attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to examine the ligand-dependent conformational changes in the human M2 muscarinic acetylcholine receptor (M2R). We show that different ligands affect conformational alteration appearing at the C=O stretch of amide-I band in M2R. Notably, ATR-FTIR signals strongly correlated with G-protein activation levels in cells. Together, we propose that amide-I band serves as an infrared probe to distinguish the ligand efficacy in M2R and paves the path to rationally design ligands with varied efficacy towards the target GPCR.


2021 ◽  
Author(s):  
Matthew Harris ◽  
Duncan I. Mackie ◽  
John B. Pawlak ◽  
Sabrina Carvalho ◽  
Tin T. Truong ◽  
...  

AbstractGastric inhibitory polypeptide (GIP) receptor is a class B1 GPCR, that responds to GIP and physiologically potentiates glucose-stimulated insulin secretion. Like most class B1 GPCRs, GIPR has been shown to interact with RAMPs, yet the effects of RAMPs on its signalling and trafficking remain poorly understood. We demonstrate that RAMPs modulate G protein activation and GIPR internalisation profiles. RAMP3 reduced GIPR Gs activation and cAMP production but retained GIPR at the cell surface, and this was associated with prolonged ERK1/2 phosphorylation and β-arrestin association. By contrast, RAMP1/2 reduced Gq/11/15 activation of the GIPR. Through knockout mice studies, we show that RAMP1 is important to the normal physiological functioning of GIPR to regulate blood glucose levels. Thus, RAMPs act on G protein/β-arrestin complexes, having both acute and chronic effects on GIPR function, while this study also raises the possibility of a more general role of RAMP3 to enhance GPCR plasma membrane localisation.


Sign in / Sign up

Export Citation Format

Share Document