Influence of microflow on hepatic sinusoid blood flow and red blood cell deformation

Author(s):  
Tianhao Wang ◽  
Shouqin Lü ◽  
Yinjing Hao ◽  
Zinan Su ◽  
Mian Long ◽  
...  
2012 ◽  
Vol 45 (15) ◽  
pp. 2684-2689 ◽  
Author(s):  
Davod Alizadehrad ◽  
Yohsuke Imai ◽  
Keita Nakaaki ◽  
Takuji Ishikawa ◽  
Takami Yamaguchi

1997 ◽  
Vol 272 (5) ◽  
pp. H2107-H2114 ◽  
Author(s):  
D. C. Poole ◽  
T. I. Musch ◽  
C. A. Kindig

As muscles are stretched, blood flow and oxygen delivery are compromised, and consequently muscle function is impaired. We tested the hypothesis that the structural microvascular sequellae associated with muscle extension in vivo would impair capillary red blood cell hemodynamics. We developed an intravital spinotrapezius preparation that facilitated direct on-line measurement and alteration of sarcomere length simultaneously with determination of capillary geometry and red blood cell flow dynamics. The range of spinotrapezius sarcomere lengths achievable in vivo was 2.17 +/- 0.05 to 3.13 +/- 0.11 microns. Capillary tortuosity decreased systematically with increases of sarcomere length up to 2.6 microns, at which point most capillaries appeared to be highly oriented along the fiber longitudinal axis. Further increases in sarcomere length above this value reduced mean capillary diameter from 5.61 +/- 0.03 microns at 2.4-2.6 microns sarcomere length to 4.12 +/- 0.05 microns at 3.2-3.4 microns sarcomere length. Over the range of physiological sarcomere lengths, bulk blood flow (radioactive microspheres) decreased approximately 40% from 24.3 +/- 7.5 to 14.5 +/- 4.6 ml.100 g-1.min-1. The proportion of continuously perfused capillaries, i.e., those with continuous flow throughout the 60-s observation period, decreased from 95.9 +/- 0.6% at the shortest sarcomere lengths to 56.5 +/- 0.7% at the longest sarcomere lengths and was correlated significantly with the reduced capillary diameter (r = 0.711, P < 0.01; n = 18). We conclude that alterations in capillary geometry and luminal diameter consequent to increased muscle sarcomere length are associated with a reduction in mean capillary red blood cell velocity and a greater proportion of capillaries in which red blood cell flow is stopped or intermittent. Thus not only does muscle stretching reduce bulk blood (and oxygen) delivery, it also alters capillary red blood cell flow dynamics, which may further impair blood-tissue oxygen exchange.


2019 ◽  
Vol 39 (9) ◽  
pp. 0917002
Author(s):  
陈铭 Ming Chen ◽  
徐君宜 Junyi Xu ◽  
高志山 Zhishan Gao ◽  
朱丹 Dan Zhu ◽  
袁群 Qun Yuan

Author(s):  
Peter W. Windes ◽  
Danesh K. Tafti ◽  
Bahareh Behkam

The present work lays out an accurate, three-dimensional computational fluid dynamics (CFD) model of a human blood capillary. This model is composed of red blood cells and blood plasma inside a cylindrical section of a capillary. The plasma flow is resolved using an incompressible Navier-Stokes solver. At the level of capillaries, red blood cells must be individually handled to correctly resolve the hydrodynamics in the system. They cannot be lumped in with the plasma and considered as a non-Newtonian suspension because of the relative scale of the capillaries and the blood cells. Red blood cells act as highly deformable, fluid filled vesicles which readily deform from their typical biconcave shape when passing through narrow capillaries. In the present model, the deformed shape of red blood cells is predicted using a combination of analytical models and experimental data on cell deformation. The cell volume, cell surface area, and plasma layer thickness are found to be the key parameters which define red blood cell deformation in capillaries. The red blood cells are imposed in the flow using the immersed boundary method (IBM). To save computational resources while still yielding an accurate model, the deformed shape of each red blood cell is calculated once prior to running the simulation and then held constant throughout the run. In order to validate the model, two parameters — apparent relative viscosity and hematocrit ratio — were examined. The present model shows good comparison to experimental values for both these parameters.


Sign in / Sign up

Export Citation Format

Share Document