blood cells
Recently Published Documents





2023 ◽  
Vol 83 ◽  
S. Tabassum ◽  
S. M. Hussain ◽  
S. Ali ◽  
M. Zubair-ul-Hassan Arsalan ◽  
B. Ahmad ◽  

Abstract Fish protein is serving as a source of nutrition for protein starving world. However, sustainable aquaculture products require inexpensive plant by-products due to finite sources of fish meal. Therefore, this study was conducted to examine nutrient utilization, growth performance and hematological indices of Cirrhinus mrigala fingerlings fed on Moringa oleifera leaf meal (MOLM) based diets. Fish were fed with six isonitrogenous and isoenergetic diets having MOLM as a substitute of fish meal (FM) at the levels of 0%, 10%, 20%, 30%, 40% and 50% for the period of 90 days. Fingerlings having initial weight 6.35±0.04g were reared in triplicate tanks at the stocking density of 15 and hand fed at the rate of 5% of total biomass twice regularly. Chromic oxide inclusion level was 1% in diets. After analysis, maximum growth performance and improved digestibility of nutrients were found in fish fed with diet at 10% replacement level as compared to fish fed on control diet and other test diets. Additionally, it was found that the red blood cells, white blood cells, hemoglobin and mean corpuscular hemoglobin concentration of fish showed a significantly (p<0.05) inverse correlation with the increase in MOLM. In present research, it was concluded that MOLM has good potential to be used as a FM substitute in C. mrigala diet with maximum effect at 10% showing positive hematological indices.

2022 ◽  
Vol 140 ◽  
pp. 104281
Toru Hyakutake ◽  
Hiroki Abe ◽  
Yohei Miyoshi ◽  
Manabu Yasui ◽  
Rina Suzuki ◽  

2024 ◽  
Vol 84 ◽  
G. S. Vicente-Ferreira ◽  
G. S. Martins ◽  
N. A. Chaves ◽  
D. G. H. Silva ◽  
C. R. Bonini-Domingos

Abstract Hibernation is a natural condition of animals that lives in the temperate zone, although some tropical lizards also experience hibernation annually, such as the lizard native from South America, Salvator merianae, or “tegu” lizard. Even though physiological and metabolic characteristic associated with hibernation have been extensively studied, possible alterations in the red blood cells (RBC) integrity during this period remains unclear. Dehydration and fasting are natural consequences of hibernating for several months and it could be related to some cellular modifications. In this study, we investigated if the osmotic tolerance of RBCs of tegu lizard under hibernation is different from the cells obtained from animals while normal activity. Additionally, we indirectly investigated if the RBCs membrane of hibernating tegus could be associated with oxidation by quantifying oxidized biomolecules and the activity of antioxidant enzymes. Our findings suggest that RBCs are more fragile during the hibernation period, although we did not find evidence of an oxidative stress scenario associated with the accentuated fragility. Even though we did not exclude the possibility of oxidative damage during hibernation, we suggested that an increased RBCs volume as a consequence of hypoosmotic blood during hibernation could also affect RBCs integrity as noted.

2023 ◽  
Vol 83 ◽  
Omnia N. Abdel-Rahman ◽  
Enas S. Abdel-Baky

Abstract Excessive intake of non-steroidal anti-inflammatory drugs such as, diclofenac sodium (DS) may lead to toxicity in the rats. In this work, we aimed to examine the protective impact of lentil extract (LE) and folic acid (FA) on the hematological markers, the kidney tissue oxidative stress and the renal function against diclofenac sodium (DS) in male albino rats. The rats (120-150 g) were divided into four equal groups randomly, the first group kept as the untreated control. The second group was administrated with DS (11.6 mg/kg b.wt. orally once/day). The third group was received DS+FA (11.6 mg/kg b.wt.+76.9 microgram/kg b.wt.) orally once/day. The fourth group was treated with DS+LE (11.6 mg/kg b.wt.+500 mg/kg b.wt.) orally once/day. After four weeks, the results revealed that DS produced a significant decrease in the values of red blood cells (RBCs), hemoglobin concentration (Hb), hematocrit (HCT) and white blood cells (WBCs). On the other hand, there was a significant increase in the platelets count. Also, DS induced a renal deterioration; this was evidenced by the significant increase in the serum levels of urea, creatinine, uric acid, Na, Ca, Mg as well as the nitric oxide (NO) level in the kidney tissue. Also, there were a significant reduction in the serum levels of potassium (K) and reduced glutathione (GSH) in the kidney homogenates. Moreover, the findings in the rats treated by DS+LE or DS+FA showed a potential protection on the hematological markers, oxidative stress in the kidney tissue and the renal function disturbed by DS. LE and FA could play a potent role for the prevention the adverse hematological, the kidney tissue oxidative stress and the renal dysfunction caused by DS via their anti-oxidative and bioactive phytochemicals.

2022 ◽  
Barbara J. Bain

2022 ◽  
Vol 12 ◽  
Pak Hin Chow ◽  
Charles D. Cox ◽  
Jinxin V. Pei ◽  
Nancy Anabaraonye ◽  
Saeed Nourmohammadi ◽  

In sickle cell disease (SCD), the pathological shift of red blood cells (RBCs) into distorted morphologies under hypoxic conditions follows activation of a cationic leak current (Psickle) and cell dehydration. Prior work showed sickling was reduced by 5-hydroxylmethyl-2-furfural (5-HMF), which stabilized mutant hemoglobin and also blocked the Psickle current in RBCs, though the molecular basis of this 5-HMF-sensitive cation current remained a mystery. Work here is the first to test the hypothesis that Aquaporin-1 (AQP1) cation channels contribute to the monovalent component of Psickle. Human AQP1 channels expressed in Xenopus oocytes were evaluated for sensitivity to 5-HMF and four derivatives known to have differential efficacies in preventing RBC sickling. Ion conductances were measured by two-electrode voltage clamp, and osmotic water permeability by optical swelling assays. Compounds tested were: 5-HMF; 5-PMFC (5-(phenoxymethyl)furan-2-carbaldehyde); 5-CMFC (5-(4-chlorophenoxymethyl)furan-2-carbaldehyde); 5-NMFC (5-(2-nitrophenoxymethyl)-furan-2-carbaldehyde); and VZHE006 (tert-butyl (5-formylfuran-2-yl)methyl carbonate). The most effective anti-sickling agent, 5-PMFC, was the most potent inhibitor of the AQP1 ion conductance (98% block at 100 µM). The order of sensitivity of the AQP1 conductance to inhibition was 5-PMFC &gt; VZHE006 &gt; 5-CMFC ≥ 5-NMFC, which corresponded with effectiveness in protecting RBCs from sickling. None of the compounds altered AQP1 water channel activity. Combined application of a selective AQP1 ion channel blocker AqB011 (80 µM) with a selective hemoglobin modifying agent 5-NMFC (2.5 mM) increased anti-sickling effectiveness in red blood cells from human SCD patients. Another non-selective cation channel known to be expressed in RBCs, Piezo1, was unaffected by 2 mM 5-HMF. Results suggest that inhibition of AQP1 ion channels and capacity to modify hemoglobin are combined features of the most effective anti-sickling agents. Future therapeutics aimed at both targets could hold promise for improved treatments for SCD.

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 373
Davide Masi ◽  
Renata Risi ◽  
Filippo Biagi ◽  
Daniel Vasquez Barahona ◽  
Mikiko Watanabe ◽  

The key factors playing a role in the pathogenesis of metabolic alterations observed in many patients with obesity have not been fully characterized. Their identification is crucial, and it would represent a fundamental step towards better management of this urgent public health issue. This aim could be accomplished by exploiting the potential of machine learning (ML) technology. In a single-centre study (n = 2567), we used an ML analysis to cluster patients with metabolically healthy (MHO) or metabolically unhealthy (MUO) obesity, based on several clinical and biochemical variables. The first model provided by ML was able to predict the presence/absence of MHO with an accuracy of 66.67% and 72.15%, respectively, and included the following parameters: HOMA-IR, upper body fat/lower body fat, glycosylated haemoglobin, red blood cells, age, alanine aminotransferase, uric acid, white blood cells, insulin-like growth factor 1 (IGF-1) and gamma-glutamyl transferase. For each of these parameters, ML provided threshold values identifying either MUO or MHO. A second model including IGF-1 zSDS, a surrogate marker of IGF-1 normalized by age and sex, was even more accurate with a 71.84% and 72.3% precision, respectively. Our results demonstrated high IGF-1 levels in MHO patients, thus highlighting a possible role of IGF-1 as a novel metabolic health parameter to effectively predict the development of MUO using ML technology.

2022 ◽  
Vol 8 (4) ◽  
pp. 239-241
Vinayaka Ambujakshi Manjunatha ◽  
Trinath Kishore Damera ◽  
Akshay Kumar T K ◽  
Rupinder Jyot Singh ◽  
Tanmay Popat ◽  

AlbPRF is a blood by-product, without additives, using only autologous blood, which after centrifugation will be produced in two stages: heating and incorporation: heating of the serum and low platelet plasma and incorporation of cells (GF and PRF cytokines liquid, removed from the junction of the leukocyte zone and the red blood cells). This new biomaterial has already been tested in vitro and translational research with this new material has already started. Excellent results can be expected from the use of AlbPRF, not only for oral/periodontal surgery applications but also for use in facial medicine and aesthetics.

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 144
Olivia Edwards ◽  
Alicia Burris ◽  
Josh Lua ◽  
Diana J. Wilkie ◽  
Miriam O. Ezenwa ◽  

This review outlines the current clinical research investigating how the haptoglobin (Hp) genetic polymorphism and stroke occurrence are implicated in sickle cell disease (SCD) pathophysiology. Hp is a blood serum glycoprotein responsible for binding and removing toxic free hemoglobin from the vasculature. The role of Hp in patients with SCD is critical in combating blood toxicity, inflammation, oxidative stress, and even stroke. Ischemic stroke occurs when a blocked vessel decreases oxygen delivery in the blood to cerebral tissue and is commonly associated with SCD. Due to the malformed red blood cells of sickle hemoglobin S, blockage of blood flow is much more prevalent in patients with SCD. This review is the first to evaluate the role of the Hp polymorphism in the incidence of stroke in patients with SCD. Overall, the data compiled in this review suggest that further studies should be conducted to reveal and evaluate potential clinical advancements for gene therapy and Hp infusions.

Sign in / Sign up

Export Citation Format

Share Document