Interdependent effects of sound duration and amplitude on neuronal onset response in mice inferior colliculus

2014 ◽  
Vol 1543 ◽  
pp. 209-222
Author(s):  
Ningqian Wang ◽  
Xiao Wang ◽  
Xiaoli Yang ◽  
Jie Tang ◽  
Zhongju Xiao
2000 ◽  
Vol 84 (3) ◽  
pp. 1475-1487 ◽  
Author(s):  
John H. Casseday ◽  
Daphna Ehrlich ◽  
Ellen Covey

In the inferior colliculus (IC) of the big brown bat, a subpopulation of cells (∼35%) are tuned to a narrow range of sound durations. Band-pass tuning for sound duration has not been seen at lower levels of the auditory pathway. Previous work suggests that it arises at the IC through the interaction of sound-evoked, temporally offset, excitatory and inhibitory inputs. To test this hypothesis, we recorded from duration-tuned neurons in the IC and examined duration tuning before and after iontophoretic infusion of antagonists to γ-aminobutyric acid-A (GABAA) (bicuculline) or glycine (strychnine). The criterion for duration tuning was that the neuron's spike count as a function of duration had a peak value at one duration or a range of durations that was ≥2 times the lowest nonzero value at longer durations. Out of 21 units tested with bicuculline, duration tuning was eliminated in 15, broadened in two, and unaltered in four. Out of 10 units tested with strychnine, duration tuning was eliminated in four, broadened in one, and unaltered in five. For units tested with both bicuculline and strychnine, bicuculline had a greater effect on reducing or abolishing duration tuning than did strychnine. Bicuculline and strychnine both produced changes in discharge pattern. There was nearly always a shift from an offset response to an onset response, indicating that in the predrug condition, inhibition arrived simultaneously with excitation or preceded it. There was often an increase in the length of the spike train, indicating that in the predrug condition, inhibition also coincided with later parts of excitation. These findings support two hypotheses. First, duration tuning is created in the IC. Second, although the construction of duration tuning varies in some details among IC neurons, it follows three rules: 1) an excitatory and an inhibitory event are temporally linked to the onset of sound but temporally offset from one another; 2) the duration of some inhibitory event must be linked to the duration of the sound; 3) an excitatory event must be linked to the offset of sound.


Science ◽  
1994 ◽  
Vol 264 (5160) ◽  
pp. 847-850 ◽  
Author(s):  
J. Casseday ◽  
D Ehrlich ◽  
E Covey

2008 ◽  
Vol 100 (6) ◽  
pp. 3407-3416 ◽  
Author(s):  
Christofer J. Edwards ◽  
Christopher J. Leary ◽  
Gary J. Rose

Stereotyped intervals between successive sound pulses characterize the acoustic signals of anurans and other organisms and provide critical information to receivers. One class of midbrain neuron responds selectively when pulses are repeated at slow rates (long intervals). To examine the mechanisms that underlie long-interval selectivity, we made whole cell recordings, in vivo, from neurons in the anuran inferior colliculus (anuran IC). In most cases, long-pass interval selectivity appeared to arise from interplay between excitation and inhibition; in ∼25% of these cases, the delayed inhibition to a pulse overlapped with the excitation to the following pulse at fast pulse repetition rates (PRRs), resulting in a phasic “onset” response. In the remaining cases, inhibition appeared to precede excitation. These neurons did not respond to fast PRRs apparently because delayed excitation to a pulse overlapped with the inhibition to the following pulse. These results suggest that the relative timing of inhibition and excitation govern differences in the response properties of these two cell types. Loading cells with cesium increased their responses to fast AM rates, supporting a role for inhibition in long-interval selectivity. Three cells showed little or no evidence of inhibition and exhibited strong depression of excitation. These findings are discussed in the context of current models for long-pass interval selectivity.


1999 ◽  
Vol 137 (1-2) ◽  
pp. 137-154 ◽  
Author(s):  
Z.M Fuzessery ◽  
J.C Hall

1997 ◽  
Vol 77 (5) ◽  
pp. 2360-2372 ◽  
Author(s):  
Daphna Ehrlich ◽  
John H. Casseday ◽  
Ellen Covey

Ehrlich, Daphna, John H. Casseday, and Ellen Covey. Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J. Neurophysiol. 77: 2360–2372, 1997. Neural tuning to different sound durations may be a useful filter for identification of certain sounds, especially those that are biologically important. The auditory midbrains of mammals and amphibians contain neurons that appear to be tuned to sound duration. In amphibians, neurons are tuned to durations of sound that are biologically important. The purpose of this study was to characterize responses of neurons in the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus, to sounds of different durations. Our aims were to determine what percent of neurons are duration tuned and how best durations are correlated to durations of echolocation calls, and to examine response properties that may be relevant to the mechanism for duration tuning, such as latency and temporal firing pattern; we also examined frequency tuning and rate-level functions. We recorded from 136 single units in the central nucleus of the IC of unanesthetized bats. The stimuli were pure tones, frequency-modulated sweeps, and broadband noise. The criterion for duration tuning was an increase in spike count of ≥50% at some durations compared with others. Of the total units sampled, 36% were tuned to stimulus duration. All of these units were located in the caudal half of the IC. Best duration for most units ranged from <1 to 10 ms, but a few had best durations up to ≥20 ms. This range is similar to the range of durations of echolocation calls used by Eptesicus. All duration-tuned neurons responded transiently. The minimum latency was always longer than the best duration. Duration-tuned units have best durations and best frequencies that match the temporal structure and frequency range of the echolocation calls. Thus the results raise the hypothesis that neurons in the IC of Eptesicus, and probably the auditory midbrain of other vertebrates, are tuned to biologically important sound durations. We suggest a model for duration tuning consisting of three components: 1) inhibitory input that is correlated with the onset of the stimulus and is sustained for the stimulus duration; 2) transient excitation that is correlated with the offset of the stimulus; and 3) transient excitation that is correlated with the onset of the stimulus but is delayed in time relative to the onset of inhibition. For the neuron to fire, the two excitatory events must coincide in time; noncoincident excitatory events are not sufficient.


2004 ◽  
Vol 91 (5) ◽  
pp. 2215-2226 ◽  
Author(s):  
Emanuel C. Mora ◽  
Manfred Kössl

This study examines duration selectivity in auditory neurons of the inferior colliculus of the bat Molossus molossus (Molossidae, Chiroptera) from Cuba. Three main types of duration selectivity, short-, band-, and long-pass, as previously described in other species, are present in M. molossus. The range of best durations in the inferior colliculus of this species approximates the durations of their echolocation calls, suggesting that, as has been shown in other species of bats and frogs, the filter mechanism that produces duration tuning is selective for species-specific sounds relevant to behavior. Duration coding in M. molossus is not unambiguous because ∼30% of the short- and band-pass neurons respond best to two different stimulus durations. This bimodal duration selectivity could be explained by time delayed excitatory inputs that coincide with an inhibitory rebound. In addition, the effect of stimulus intensity on duration selectivity was tested. For most of the neurons (78%), duration selectivity was affected by absolute sound pressure level and/or small changes of sound pressure. In this respect, the processing of stimulus duration by collicular neurons seems to be more complex in M. molossus than in other species studied so far.


Neuroreport ◽  
2013 ◽  
Vol 24 (8) ◽  
pp. 404-409 ◽  
Author(s):  
Silvio Macías ◽  
Julio C. Hechavarría ◽  
Manfred Kössl ◽  
Emanuel C. Mora

2006 ◽  
Vol 95 (2) ◽  
pp. 823-836 ◽  
Author(s):  
D. Pérez-González ◽  
M. S. Malmierca ◽  
J. M. Moore ◽  
O. Hernández ◽  
E. Covey

Many animals use duration to help them identify the source and meaning of a sound. Duration-sensitive neurons have been found in the auditory midbrain of mammals and amphibians, where their selectivity seems to correspond to the lengths of species-specific vocalizations. In this study, single neurons in the rat inferior colliculus (IC) were tested for sensitivity to sound duration. About one-half (54%) of the units sampled showed some form of duration selectivity. The majority of these (76%) were long-pass neurons that responded to sounds exceeding some duration threshold (range: 5–60 ms). Band-pass neurons, which only responded to a restricted range of durations, made up 13% of duration-sensitive neurons (best durations: 15–120 ms). Other units displayed short-pass (2%) or mixed (9%) response patterns. The majority of duration-sensitive neurons were localized outside the central nucleus of the IC, especially in the dorsal cortex, where more than one-half of the neurons sampled had long-pass selectivity for duration. Band-pass duration tuned neurons were only found outside the central nucleus. Characteristics of duration-sensitive neurons in the rat support the idea that this filtering arises through an interaction of excitatory and inhibitory inputs that converge in the IC. Band-pass neurons typically responded at sound offset, suggesting that their tuning is created through the same mechanisms that have been described in echolocating bats. The finding that the first-spike latencies of all long-pass neurons were longer than the shortest duration to which they responded supports the idea that they receive transient inhibition before, or simultaneously with, a sustained excitatory input. The ranges of selectivity in rat IC neurons are within the range of durations of rat vocalizations. These data suggest that a population of neurons in the rat IC have evolved to transmit information about behaviorally relevant sound durations using mechanisms that are common to all mammals, with an emphasis on long-pass tuning characteristics.


Sign in / Sign up

Export Citation Format

Share Document