Automated detection and classification of high frequency oscillations (HFOs) in human intracereberal EEG

2013 ◽  
Vol 8 (6) ◽  
pp. 927-934 ◽  
Author(s):  
Sahbi Chaibi ◽  
Zied Sakka ◽  
Tarek Lajnef ◽  
Mounir Samet ◽  
Abdennaceur Kachouri
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Peter Höller ◽  
Eugen Trinka ◽  
Yvonne Höller

High-frequency oscillations (HFOs) in the electroencephalogram (EEG) are thought to be a promising marker for epileptogenicity. A number of automated detection algorithms have been developed for reliable analysis of invasively recorded HFOs. However, invasive recordings are not widely applicable since they bear risks and costs, and the harm of the surgical intervention of implantation needs to be weighted against the informational benefits of the invasive examination. In contrast, scalp EEG is widely available at low costs and does not bear any risks. However, the detection of HFOs on the scalp represents a challenge that was taken on so far mostly via visual detection. Visual detection of HFOs is, in turn, highly time-consuming and subjective. In this review, we discuss that automated detection algorithms for detection of HFOs on the scalp are highly warranted because the available algorithms were all developed for invasively recorded EEG and do not perform satisfactorily in scalp EEG because of the low signal-to-noise ratio and numerous artefacts as well as physiological activity that obscures the tiny phenomena in the high-frequency range.


2022 ◽  
Vol 73 ◽  
pp. 103418
Author(s):  
Fatma Krikid ◽  
Ahmad Karfoul ◽  
Sahbi Chaibi ◽  
Amar Kachenoura ◽  
Anca Nica ◽  
...  

2013 ◽  
Vol 124 (10) ◽  
pp. 1935-1942 ◽  
Author(s):  
Martin Pail ◽  
Josef Halámek ◽  
Pavel Daniel ◽  
Robert Kuba ◽  
Ivana Tyrlíková ◽  
...  

2020 ◽  
Author(s):  
Michael D. Nunez ◽  
Krit Charupanit ◽  
Indranil Sen-Gupta ◽  
Beth A. Lopour ◽  
Jack J. Lin

AbstractHigh frequency oscillations (HFOs) recorded by intracranial electrodes have generated excitement for their potential to help localize epileptic tissue for surgical resection (Frauscher et al., 2017). However, previous research has shown that the number of HFOs per minute (i.e. the HFO “rate”) is not stable over the duration of intracranial recordings. The rate of HFOs increases during periods of slow-wave sleep (von Ellenrieder et al., 2017), and HFOs that are predictive of epileptic tissue may occur in oscillatory patterns (Motoi et al., 2018). We sought to further understand how between-seizure (i.e. “interictal”) HFO dynamics predict the seizure onset zone (SOZ). Using long-term intracranial EEG from 16 subjects, we fit Poisson and Negative Binomial mixture models that describe HFO dynamics and include the ability to switch between two discrete brain states. Oscillatory dynamics of HFO occurrences were found to be predictive of SOZ and were more consistently predictive than HFO rate. Using concurrent scalp-EEG in two patients, we show that the model-found brain states corresponded to (1) non-REM (NREM) sleep and (2) awake and rapid eye movement (REM) sleep. This work suggests that unsupervised approaches for classification of epileptic tissue without sleep-staging can be developed using mixture modeling of HFO dynamics.


Sign in / Sign up

Export Citation Format

Share Document