scholarly journals High-Frequency Oscillations in the Scalp Electroencephalogram: Mission Impossible without Computational Intelligence

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Peter Höller ◽  
Eugen Trinka ◽  
Yvonne Höller

High-frequency oscillations (HFOs) in the electroencephalogram (EEG) are thought to be a promising marker for epileptogenicity. A number of automated detection algorithms have been developed for reliable analysis of invasively recorded HFOs. However, invasive recordings are not widely applicable since they bear risks and costs, and the harm of the surgical intervention of implantation needs to be weighted against the informational benefits of the invasive examination. In contrast, scalp EEG is widely available at low costs and does not bear any risks. However, the detection of HFOs on the scalp represents a challenge that was taken on so far mostly via visual detection. Visual detection of HFOs is, in turn, highly time-consuming and subjective. In this review, we discuss that automated detection algorithms for detection of HFOs on the scalp are highly warranted because the available algorithms were all developed for invasively recorded EEG and do not perform satisfactorily in scalp EEG because of the low signal-to-noise ratio and numerous artefacts as well as physiological activity that obscures the tiny phenomena in the high-frequency range.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Dorottya Cserpan ◽  
Ece Boran ◽  
Santo Pietro Lo Biundo ◽  
Richard Rosch ◽  
Johannes Sarnthein ◽  
...  

Abstract High-frequency oscillations in scalp EEG are promising non-invasive biomarkers of epileptogenicity. However, it is unclear how high-frequency oscillations are impacted by age in the paediatric population. We prospectively recorded whole-night scalp EEG in 30 children and adolescents with focal or generalized epilepsy. We used an automated and clinically validated high-frequency oscillation detector to determine ripple rates (80–250 Hz) in bipolar channels. Children < 7 years had higher high-frequency oscillation rates (P = 0.021) when compared with older children. The median test−retest reliability of high-frequency oscillation rates reached 100% (iqr 50) for a data interval duration of 10 min. Scalp high-frequency oscillation frequency decreased with age (r = −0.558, P = 0.002), whereas scalp high-frequency oscillation duration and amplitude were unaffected. The signal-to-noise ratio improved with age (r = 0.37, P = 0.048), and the background ripple band activity decreased with age (r = −0.463, P = 0.011). We characterize the relationship of scalp high-frequency oscillation features and age in paediatric patients. EEG intervals of ≥10 min duration are required for reliable measurements of high-frequency oscillation rates. This study is a further step towards establishing scalp high-frequency oscillations as a valid epileptogenicity biomarker in this vulnerable age group.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hanan El Shakankiry ◽  
Susan T. Arnold

IntroductionDespite all the efforts for optimizing epilepsy management in children over the past decades, there is no clear consensus regarding whether to treat or not to treat epileptiform discharges (EDs) after a first unprovoked seizure or the optimal duration of therapy with anti-seizure medication (ASM). It is therefore highly needed to find markers on scalp electroencephalogram (EEG) that can help identify pathological EEG discharges that require treatment.Aim of the studyThis retrospective study aimed to identify whether the coexistence of ripples/high-frequency oscillations (HFOs) with interictal EDs (IEDs) in routinely acquired scalp EEG is associated with a higher risk of seizure recurrence and could be used as a prognostic marker.Methods100 children presenting with new onset seizure to Children’s Medical Center- Dallas during 2015–2016, who were not on ASM and had focal EDs on an awake and sleep EEG recorded with sample frequency of 500 HZ, were randomly identified by database review. EEGs were analyzed blinded to the data of the patients. HFOs were visually identified using review parameters including expanded time base and adjusted filter settings.ResultsThe average age of patients was 6.3 years (±4.35 SD). HFOs were visually identified in 19% of the studied patients with an inter-rater reliability of 99% for HFO negative discharges and 78% agreement for identification of HFOs. HFOs were identified more often in the younger age group; however, they were identified in 11% of patients >5 years old. They were more frequently associated with spikes than with sharp waves and more often with higher amplitude EDs. Patients with HFOs were more likely to have a recurrence of seizures in the year after the first seizure (P < 0.05) and to continue to have seizures after 2 years (P < 0.0001). There was no statistically significant difference between the two groups with regards to continuing ASM after 2 years.ConclusionIncluding analysis for HFOs in routine EEG interpretation may increase the yield of the study and help guide the decision to either start or discontinue ASM. In the future, this may also help to identify pathological discharges with deleterious effects on the growing brain and set a new target for the management of epilepsy.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 52
Author(s):  
Oleksandr Makeyev ◽  
Frederick Lee ◽  
Mark Musngi

Epilepsy affects approximately 67 million people worldwide with up to 75% from developing countries. Diagnosing epilepsy using electroencephalogram (EEG) is complicated due to its poor signal-to-noise ratio, high sensitivity to various forms of artifacts, and low spatial resolution. Laplacian EEG signal via novel and noninvasive tripolar concentric ring electrodes (tEEG) is superior to EEG via conventional disc electrodes due to its unique capabilities, which allow automatic attenuation of common movement and muscle artifacts. In this work, we apply exponentially embedded family (EEF) to show feasibility of automatic detection of gamma band high-frequency oscillations (HFOs) in tEEG data from two human patients with epilepsy as a step toward the ultimate goal of using the automatically detected HFOs as auxiliary features for seizure onset detection to improve diagnostic yield of tEEG for epilepsy. Obtained preliminary results suggest the potential of the approach and feasibility of detecting HFOs in tEEG data using the EEF based detector with high accuracy. Further investigation on a larger dataset is needed for a conclusive proof.


2021 ◽  
Author(s):  
Karla Burelo ◽  
Georgia Ramantani ◽  
Giacomo Indiveri ◽  
Johannes Sarnthein

Abstract Background: Interictal High Frequency Oscillations (HFO) are measurable in scalp EEG. This has aroused interest in investigating their potential as biomarkers of epileptogenesis, seizure propensity, disease severity, and treatment response. The demand for therapy monitoring in epilepsy has kindled interest in compact wearable electronic devices for long- term EEG recording. Spiking neural networks (SNN) have been shown to be optimal architectures for being embedded in compact low-power signal processing hardware. Methods: We analyzed 20 scalp EEG recordings from 11 patients with pediatric focal lesional epilepsy. We designed a custom SNN to detect events of interest (EoI) in the 80-250 Hz ripple band and reject artifacts in the 500-900 Hz band. Results: We identified the optimal SNN parameters to automatically detect EoI and reject artifacts. The occurrence of HFO thus detected was associated with active epilepsy with 80% accuracy. The HFO rate mirrored the decrease in seizure frequency in 8 patients (p = 0.0047). Overall, the HFO rate correlated with seizure frequency (rho = 0.83, p < 0.0001, Spearman’s correlation).Conclusions: The fully automated SNN detected clinically relevant HFO in the scalp EEG. This is a further step towards non-invasive epilepsy monitoring with a low-power wearable device.


2021 ◽  
Vol 15 ◽  
Author(s):  
Katsuhiro Kobayashi ◽  
Takashi Shibata ◽  
Hiroki Tsuchiya ◽  
Tomoyuki Akiyama

AimRipple-band epileptic high-frequency oscillations (HFOs) can be recorded by scalp electroencephalography (EEG), and tend to be associated with epileptic spikes. However, there is a concern that the filtration of steep waveforms such as spikes may cause spurious oscillations or “false ripples.” We excluded such possibility from at least some ripples by EEG differentiation, which, in theory, enhances high-frequency signals and does not generate spurious oscillations or ringing.MethodsThe subjects were 50 pediatric patients, and ten consecutive spikes during sleep were selected for each patient. Five hundred spike data segments were initially reviewed by two experienced electroencephalographers using consensus to identify the presence or absence of ripples in the ordinary filtered EEG and an associated spectral blob in time-frequency analysis (Session A). These EEG data were subjected to numerical differentiation (the second derivative was denoted as EEG″). The EEG″ trace of each spike data segment was shown to two other electroencephalographers who judged independently whether there were clear ripple oscillations or uncertain ripple oscillations or an absence of oscillations (Session B).ResultsIn Session A, ripples were identified in 57 spike data segments (Group A-R), but not in the other 443 data segments (Group A-N). In Session B, both reviewers identified clear ripples (strict criterion) in 11 spike data segments, all of which were in Group A-R (p &lt; 0.0001 by Fisher’s exact test). When the extended criterion that included clear and/or uncertain ripples was used in Session B, both reviewers identified 25 spike data segments that fulfilled the criterion: 24 of these were in Group A-R (p &lt; 0.0001).DiscussionWe have demonstrated that real ripples over scalp spikes exist in a certain proportion of patients. Ripples that were visualized consistently using both ordinary filters and the EEG″ method should be true, but failure to clarify ripples using the EEG″ method does not mean that true ripples are absent.ConclusionThe numerical differentiation of EEG data provides convincing evidence that HFOs were detected in terms of the presence of such unusually fast oscillations over the scalp and the importance of this electrophysiological phenomenon.


Author(s):  
Carolina Migliorelli ◽  
Joan F. Alonso ◽  
Sergio Romero ◽  
Miguel A. Mañanas ◽  
Rafal Nowak ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ece Boran ◽  
Johannes Sarnthein ◽  
Niklaus Krayenbühl ◽  
Georgia Ramantani ◽  
Tommaso Fedele

Abstract High-frequency oscillations (HFO) are promising EEG biomarkers of epileptogenicity. While the evidence supporting their significance derives mainly from invasive recordings, recent studies have extended these observations to HFO recorded in the widely accessible scalp EEG. Here, we investigated whether scalp HFO in drug-resistant focal epilepsy correspond to epilepsy severity and how they are affected by surgical therapy. In eleven children with drug-resistant focal epilepsy that underwent epilepsy surgery, we prospectively recorded pre- and postsurgical scalp EEG with a custom-made low-noise amplifier (LNA). In four of these children, we also recorded intraoperative electrocorticography (ECoG). To detect clinically relevant HFO, we applied a previously validated automated detector. Scalp HFO rates showed a significant positive correlation with seizure frequency (R2 = 0.80, p < 0.001). Overall, scalp HFO rates were higher in patients with active epilepsy (19 recordings, p = 0.0066, PPV = 86%, NPV = 80%, accuracy = 84% CI [62% 94%]) and decreased following successful epilepsy surgery. The location of the highest HFO rates in scalp EEG matched the location of the highest HFO rates in ECoG. This study is the first step towards using non-invasively recorded scalp HFO to monitor disease severity in patients affected by epilepsy.


Sign in / Sign up

Export Citation Format

Share Document