Model predictive control for energy-efficient optimization of radiant ceiling cooling systems

2021 ◽  
pp. 108272
Author(s):  
Qiong Chen ◽  
Nan Li
Author(s):  
Oyuna Angatkina ◽  
Andrew Alleyne

Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.


2021 ◽  
Vol 18 (4) ◽  
pp. 172988142110362
Author(s):  
Zelin Huang ◽  
Zhangguo Yu ◽  
Xuechao Chen ◽  
Qingqing Li ◽  
Libo Meng ◽  
...  

Knee-stretched walking is considered to be a human-like and energy-efficient gait. The strategy of extending legs to obtain vertical center of mass trajectory is commonly used to avoid the problem of singularities in knee-stretched gait generation. However, knee-stretched gait generation utilizing this strategy with toe-off and heel-strike has kinematics conflicts at transition moments between single support and double support phases. In this article, a knee-stretched walking generation with toe-off and heel-strike for the position-controlled humanoid robot has been proposed. The position constraints of center of mass have been considered in the gait generation to avoid the kinematics conflicts based on model predictive control. The method has been verified in simulation and validated in experiment.


Sign in / Sign up

Export Citation Format

Share Document