scholarly journals A sequential equality constrained quadratic programming algorithm for inequality constrained optimization

2008 ◽  
Vol 212 (1) ◽  
pp. 112-125 ◽  
Author(s):  
Zhibin Zhu
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhijun Luo ◽  
Lirong Wang

A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.


1989 ◽  
Vol 111 (1) ◽  
pp. 130-136 ◽  
Author(s):  
J. Z. Cha ◽  
R. W. Mayne

A discrete recursive quadratic programming algorithm is developed for a class of mixed discrete constrained nonlinear programming (MDCNP) problems. The symmetric rank one (SR1) Hessian update formula is used to generate second order information. Also, strategies, such as the watchdog technique (WT), the monotonicity analysis technique (MA), the contour analysis technique (CA), and the restoration of feasibility have been considered. Heuristic aspects of handling discrete variables are treated via the concepts and convergence discussions of Part I. This paper summarizes the details of the algorithm and its implementation. Test results for 25 different problems are presented to allow evaluation of the approach and provide a basis for performance comparison. The results show that the suggested method is a promising one, efficient and robust for the MDCNP problem.


Sign in / Sign up

Export Citation Format

Share Document