scholarly journals A hybrid finite difference/control volume method for the three dimensional poroelastic wave equations in the spherical coordinate system

2014 ◽  
Vol 255 ◽  
pp. 812-824 ◽  
Author(s):  
Wensheng Zhang ◽  
Li Tong ◽  
Eric T. Chung
Author(s):  
Heather Johnston ◽  
Colleen Dewis ◽  
John Kozey

Objective The objectives were to compare cylindrical and spherical coordinate representations of the maximum reach envelope (MRE) and apply these to a comparison of age and load on the MRE. Background The MRE is a useful measurement in the design of workstations and quantifying functional capability of the upper body. As a dynamic measure, there are human factors that impact the size, shape, and boundaries of the MRE. Method Three-dimensional reach measures were recorded using a computerized potentiometric system for anthropometric measures (CPSAM) on two adult groups (aged 18–25 years and 35–70 years). Reach trials were performed holding .0, .5, and 1 kg. Results Three-dimensional Cartesian coordinates were transformed into cylindrical ( r, θ , Z) and spherical ( r, θ, ϕ) coordinates. Median reach distance vectors were calculated for 54 panels within the MRE as created by incremented banding of the respective coordinate systems. Reach distance and reach area were compared between the two groups and the loaded conditions using a spherical coordinate system. Both younger adults and unloaded condition produced greater reach distances and reach areas. Conclusions Where a cylindrical coordinate system may reflect absolute reference for design, a normalized spherical coordinate system may better reflect functional range of motion and better compare individual and group differences. Age and load are both factors that impact the MRE. Application These findings present measurement considerations for use in human reach investigation and design.


Author(s):  
Kun-Woo Kim ◽  
Jae-Wook Lee ◽  
Jin-Seok Jang ◽  
Joo-Young Oh ◽  
Ji-Heon Kang ◽  
...  

The transient-state unwinding equation of motion for a thin cable can be derived by using Hamilton’s principle for an open system, which can consider the mass change produced by the unwinding velocity in a control volume. In general, most engineering problems can be analyzed in Cartesian, cylindrical, and spherical coordinate systems. In the field of unwinding dynamics, until now, only Cartesian and cylindrical coordinate systems have been used. A spherical coordinate system has not been used because of the complexity of derivatives. Therefore, in this study, the unwinding motion of a thin cable was analyzed using a spherical coordinate system in both water and air, and the results were compared with the results in Cartesian and cylindrical coordinate systems. The unwinding motions in the spherical, Cartesian, and cylindrical coordinate systems were nearly same in both water and air. The error related to the total length was within 0.5% in water, and the error related to the maximum balloon radius was also within 0.5 % in air. Therefore, it can be concluded that it is possible to solve the transient-state unwinding equation of motion in a spherical coordinate system.


Author(s):  
Wei Li

To date, Cartesian (x, y, z) coordinate system (CCS) has been the default approach to geometrically specify atomic spatial positions in protein structures since the launch of Protein Data Bank (PDB) in 1971. To this end, this paper proposes a local spherical coordinate system (SCS) approach as an alternative to the default approach and a previously reported global SCS approach. The local SCS approach here requires only two parameters (θ and φ), instead of x, y and z as required by the default CCS approach. Essentially, CCS and SCS are like the two sides of one coin, i.e., geometric coordinate system for three-dimensional position specification. Therefore, this paper furthermore argues that it is time to flip the coin over, and have a look at the other side of the coin, e.g., the local SCS approach, which possesses an intrinsically lower degree of descriptional complexity than that of the default CCS approach, and constitutes a potentially useful alternative perspective for all protein structural research field.


Sign in / Sign up

Export Citation Format

Share Document