chaotic behavior
Recently Published Documents


TOTAL DOCUMENTS

1876
(FIVE YEARS 326)

H-INDEX

57
(FIVE YEARS 8)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 272
Author(s):  
Michal Melosik ◽  
Wieslaw Marszalek

We discuss chaos and its quality as measured through the 0-1 test for chaos. When the 0-1 test indicates deteriorating quality of chaos, because of the finite precision representations of real numbers in digital implementations, then the process may eventually lead to a periodic sequence. A simple method for improving the quality of a chaotic signal is to mix the signal with another signal by using the XOR operation. In this paper, such mixing of weak chaotic signals is considered, yielding new signals with improved quality (with K values from the 0-1 test close to 1). In some sense, such a mixing of signals could be considered as a two-layer prevention strategy to maintain chaos. That fact may be important in those applications when the hardware resources are limited. The 0-1 test is used to show the improved chaotic behavior in the case when a continuous signal (for example, from the Chua, Rössler or Lorenz system) intermingles with a discrete signal (for example, from the logistic, Tinkerbell or Henon map). The analysis is presented for chaotic bit sequences. Our approach can further lead to hardware applications, and possibly, to improvements in the design of chaotic bit generators. Several illustrative examples are included.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 165
Author(s):  
Zai-Yin He ◽  
Abderrahmane Abbes ◽  
Hadi Jahanshahi ◽  
Naif D. Alotaibi ◽  
Ye Wang

This research presents a new fractional-order discrete-time susceptible-infected-recovered (SIR) epidemic model with vaccination. The dynamical behavior of the suggested model is examined analytically and numerically. Through using phase attractors, bifurcation diagrams, maximum Lyapunov exponent and the 0−1 test, it is verified that the newly introduced fractional discrete SIR epidemic model vaccination with both commensurate and incommensurate fractional orders has chaotic behavior. The discrete fractional model gives more complex dynamics for incommensurate fractional orders compared to commensurate fractional orders. The reasonable range of commensurate fractional orders is between γ = 0.8712 and γ = 1, while the reasonable range of incommensurate fractional orders is between γ2 = 0.77 and γ2 = 1. Furthermore, the complexity analysis is performed using approximate entropy (ApEn) and C0 complexity to confirm the existence of chaos. Finally, simulations were carried out on MATLAB to verify the efficacy of the given findings.


2022 ◽  
Vol 6 (1) ◽  
pp. 31
Author(s):  
Asifa Tassaddiq ◽  
Muhammad Sajjad Shabbir ◽  
Qamar Din ◽  
Humera Naaz

The present study focuses on the dynamical aspects of a discrete-time Leslie–Gower predator–prey model accompanied by a Holling type III functional response. Discretization is conducted by applying a piecewise constant argument method of differential equations. Moreover, boundedness, existence, uniqueness, and a local stability analysis of biologically feasible equilibria were investigated. By implementing the center manifold theorem and bifurcation theory, our study reveals that the given system undergoes period-doubling and Neimark–Sacker bifurcation around the interior equilibrium point. By contrast, chaotic attractors ensure chaos. To avoid these unpredictable situations, we establish a feedback-control strategy to control the chaos created under the influence of bifurcation. The fractal dimensions of the proposed model are calculated. The maximum Lyapunov exponents and phase portraits are depicted to further confirm the complexity and chaotic behavior. Finally, numerical simulations are presented to confirm the theoretical and analytical findings.


2022 ◽  
Vol 19 (3) ◽  
pp. 2489-2505
Author(s):  
Amit Kumar ◽  
◽  
Jehad Alzabut ◽  
Sudesh Kumari ◽  
Mamta Rani ◽  
...  

<abstract><p>In this paper, a novel one dimensional chaotic map $ K(x) = \frac{\mu x(1\, -x)}{1+ x} $, $ x\in [0, 1], \mu &gt; 0 $ is proposed. Some dynamical properties including fixed points, attracting points, repelling points, stability and chaotic behavior of this map are analyzed. To prove the main result, various dynamical techniques like cobweb representation, bifurcation diagrams, maximal Lyapunov exponent, and time series analysis are adopted. Further, the entropy and probability distribution of this newly introduced map are computed which are compared with traditional one-dimensional chaotic logistic map. Moreover, with the help of bifurcation diagrams, we prove that the range of stability and chaos of this map is larger than that of existing one dimensional logistic map. Therefore, this map might be used to achieve better results in all the fields where logistic map has been used so far.</p></abstract>


2022 ◽  
Vol 7 (4) ◽  
pp. 5871-5894
Author(s):  
Daniel Clemente-López ◽  
◽  
Esteban Tlelo-Cuautle ◽  
Luis-Gerardo de la Fraga ◽  
José de Jesús Rangel-Magdaleno ◽  
...  

<abstract><p>The optimization of fractional-order (FO) chaotic systems is challenging when simulating a considerable number of cases for long times, where the primary problem is verifying if the given parameter values will generate chaotic behavior. In this manner, we introduce a methodology for detecting chaotic behavior in FO systems through the analysis of Poincaré maps. The optimization process is performed applying differential evolution (DE) and accelerated particle swarm optimization (APSO) algorithms for maximizing the Kaplan-Yorke dimension ($ D_{KY} $) of two case studies: a 3D and a 4D FO chaotic systems with hidden attractors. These FO chaotic systems are solved applying the Grünwald-Letnikov method, and the Numba just-in-time (jit) compiler is used to improve the optimization process's time execution in Python programming language. The optimization results show that the proposed method efficiently optimizes FO chaotic systems with hidden attractors while saving execution time.</p></abstract>


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Marek Berezowski ◽  
Natalia Kozioł ◽  
Marcin Lawnik

Oscillations, including chaotic ones, can spontaneously appear in chemical reactors or lean premixed combustors. Such behavior of the system is undesirable and should be identified at the stage of its modeling. This article analyzes the behavior of reverse-flow tubular chemical reactor with longitudinal dispersion in terms of chaotic oscillations. The purpose of using reverse flow is to increase the conversion degree. For the analysis of the reactor, among others, spectral analysis, entropy, and bifurcation analysis were used. The obtained results show the chaotic behavior of the reactor in a wide range of changes in the parameter’s values.


2021 ◽  
Vol 12 (1) ◽  
pp. 256
Author(s):  
Julio Alberto Ramírez-Montañez ◽  
Marco Antonio Aceves-Fernández ◽  
Jesús Carlos Pedraza-Ortega ◽  
Efrén Gorrostieta-Hurtado ◽  
Artemio Sotomayor-Olmedo

Understanding the behavior of suspended pollutants in the atmosphere has become of paramount importance to determine air quality. For this purpose, a variety of simulation software packages and a large number of algorithms have been used. Among these techniques, recurrent deep neural networks (RNN) have been used lately. These are capable of learning to imitate the chaotic behavior of a set of continuous data over time. In the present work, the results obtained from implementing three different RNNs working with the same structure are compared. These RNNs are long-short term memory network (LSTM), a recurrent gated unit (GRU), and the Elman network, taking as a case study the records of particulate matter PM10 and PM2.5 from 2005 to 2019 of Mexico City, obtained from the Red Automatica de Monitoreo Ambiental (RAMA) database. The results were compared for these three topologies in execution time, root mean square error (RMSE), and correlation coefficient (CC) metrics.


2021 ◽  
pp. 107754632110564
Author(s):  
Waqas Ishaque ◽  
Qamar Din ◽  
Muhammad Taj

In this paper, we study the dynamic of the predator–prey model based on mutual interference and its effects on searching efficiency. The parametric conditions, existence, and stability for trivial and boundary equilibrium points are studied. Also, it has shown that by applying the center manifold theorem and bifurcation theory, system undergoes Neimark–Sacker bifurcation across the neighborhood of a positive fixed point. Moreover, due to the bifurcation and chaos which objectively exist in a system, three chaos control strategies are designed and used. Moreover, to validate our theoretical and analytical discussions, numerical simulations are applied to show complex and chaotic behavior. Finally, theoretical discussions are validated with experimental field data.


2021 ◽  
Vol 12 (1) ◽  
pp. 199
Author(s):  
Myungjin Lee ◽  
Hung Soo Kim ◽  
Jaewon Kwak ◽  
Jongsung Kim ◽  
Soojun Kim

This study assessed the characteristics of water-level time series of a tidal river by decomposing it into tide, wave, rainfall-runoff, and noise components. Especially, the analysis for chaotic behavior of each component was done by estimating the correlation dimension with phase-space reconstruction of time series and by using a close returns plot (CRP). Among the time series, the tide component showed chaotic characteristics to have a correlation dimension of 1.3. It was found out that the water level has stochastic characteristics showing the increasing trend of the correlation exponent in the embedding dimension. Other components also showed the stochastic characteristics. Then, the CRP was used to examine the characteristics of each component. The tide component showed the chaotic characteristics in its CRP. The CRP of water level showed an aperiodic characteristic which slightly strayed away from its periodicity, and this might be related to the tide component. This study showed that a low water level is mainly affected by a chaotic tide component through entropy information. Even though the water level did not show chaotic characteristics in the correlation dimension, it showed stochastic chaos characteristics in the CRP. Other components showed stochastic characteristics in the CRP. It was confirmed that the water level showed chaotic characteristics when it was not affected by rainfall and stochastic characteristics deviating from the bounded trajectory when water level rises due to rainfall. Therefore, we have shown that the water level related to the chaotic tide component can also have chaotic properties because water level is influenced by chaotic tide and rainfall shock, thus it showed stochastic chaos characteristics.


Sign in / Sign up

Export Citation Format

Share Document