point attractor
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Soumyajit Seth ◽  
Grzegorz Kudra ◽  
Krzysztof Witkowski ◽  
Jan Awrejcewicz

In this paper, we have shown the electronic circuit equivalence of a mechanical system consists of two oscillators coupled with each other. The mechanical design has the effects of the magnetic, resistance forces and the spring constant of the system is periodically varying. We have shown that the system’s state variables, such as the displacements and the velocities, under the effects of different forces, lead to some nonlinear behaviors, like a transition from the fixed point attractor to the chaotic attractor through the periodic and quasi-periodic attractors. We have constructed the equivalent electronic circuit of this mechanical system and have verified the numerically obtained behaviors using the electronic circuit.


2021 ◽  
Author(s):  
Hermann Moisl

Abstract This paper proposes a model for implementation of intrinsic natural language sentence meaning in a physical language understanding system, where 'intrinsic' is understood as 'independent of meaning ascription by system-external observers'. The proposal is that intrinsic meaning can be implemented as a point attractor in the state space of a nonlinear dynamical system with feedback which is generated by temporally sequenced inputs. It is motivated by John Searle's well known (1980) critique of the then-standard and currently still influential Computational Theory of Mind (CTM), the essence of which was that CTM representations lack intrinsic meaning because that meaning is dependent on ascription by an observer. The proposed dynamical model comprises a collection of interacting artificial neural networks, and constitutes a radical simplification of the principle of compositional phrase structure which is at the heart of the current standard view of sentence semantics because it is computationally interpretable as a finite state machine.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1494
Author(s):  
Christopher Hillar ◽  
Tenzin Chan ◽  
Rachel Taubman ◽  
David Rolnick

In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model for computation in brains. The work inspired breakthroughs such as the first computer design and the theory of finite automata. We focus on learning in Hopfield networks, a special case with symmetric weights and fixed-point attractor dynamics. Specifically, we explore minimum energy flow (MEF) as a scalable convex objective for determining network parameters. We catalog various properties of MEF, such as biological plausibility, and them compare to classical approaches in the theory of learning. Trained Hopfield networks can perform unsupervised clustering and define novel error-correcting coding schemes. They also efficiently find hidden structures (cliques) in graph theory. We extend this known connection from graphs to hypergraphs and discover n-node networks with robust storage of 2Ω(n1−ϵ) memories for any ϵ>0. In the case of graphs, we also determine a critical ratio of training samples at which networks generalize completely.


2021 ◽  
Vol 31 (11) ◽  
pp. 2150169
Author(s):  
Maryam Zolfaghari-Nejad ◽  
Hossein Hassanpoor ◽  
Mostafa Charmi

In this work, we present a novel three-dimensional chaotic system with only two cubic nonlinear terms. Dynamical behavior of the system reveals a period-subtracting bifurcation structure containing all [Formula: see text]th-order ([Formula: see text]) periods that are found in the dynamical evolution of the novel system concerning different values of parameters. The new system could be evolved into different states such as point attractor, limit cycle, strange attractor and butterfly strange attractor by changing the parameters. Also, the system is multistable, which implies another feature of a chaotic system known as the coexistence of numerous spiral attractors with one limit cycle under different initial values. Furthermore, bifurcation analysis reveals interesting phenomena such as period-doubling route to chaos, antimonotonicity, periodic solutions, and quasi-periodic motion. In the meantime, the existence of periodic solutions is confirmed via constructed Poincaré return maps. In addition, by studying the influence of system parameters on complexity, it is confirmed that the chaotic system has high spectral entropy. Numerical analysis indicates that the system has a wide variety of strong dynamics. Finally, a message coding application of the proposed system is developed based on periodic solutions, which indicates the importance of studying periodic solutions in dynamical systems.


2020 ◽  
Vol 23 (11) ◽  
pp. 39-52
Author(s):  
Ivan Grabar ◽  
Olga Grabar

The paper states that the known algorithms for generating and constructing fractal sets can be significantly expanded through the family of new algorithms proposed by the authors. These algorithms are based on modelling the attractors of motion of a material point in the field N of central forces in a discrete formulation. When only one of these forces is accidentally switched on at any given time, the point attractor has a strictly fractal structure. It is shown that the perturbation of one or more of the N central forces leads to a change in the structure of the attractor. Thus, the areas of the attractor Dp , controlled by the perturbed forces, with an increase in the perturbation radius, evolve to the perturbation trajectory. For biharmonic perturbations, it is shown that these subsets belong to the inner region of the 2n–point. It has been established that for small values of the perturbation radius R the parameter n → ∞, and for large values of R the parameter n → 1. For the field of central forces in the form of matrices 2*2; 3*3; 5*5 the quantitative models n(2R/B; m) are constructed and their close correlation with the perturbation parameter R, the size of the side B of the square matrix of the field of central forces and the “gravitational” parameter m is shown. It is shown that the gnoseology of the proposed algorithms originates from the wellknown algorithm of M. Barnsley, but the physical and software components are significantly improved and developed. The proposed family of algorithms allows to expand the possibilities of generating original (exclusive) fractal sets up to ~ 1040… 1050 pieces. At the same time, it is possible to control the fractal dimension, porosity, specific gravity, aerodynamic and hydraulic resistance, noise, sound and thermal insulation properties, colour of individual subregions, etc. in a wide range of values. It is shown that a significant part of such fractal sets, especially those with a high degree of symmetry, can be useful for solving problems in the field of design, ergonomics and aesthetics, for decorating buildings, clothing, footwear, haberdashery, toys, as well as for creating puzzles, IQ-tests, etc.


Author(s):  
Bolun Chen ◽  
Paul Miller

Abstract Neural populations with strong excitatory recurrent connections can support bistable states in their mean firing rates. Multiple fixed points in a network of such bistable units can be used to model memory retrieval and pattern separation. The stability of fixed points may change on a slower timescale than that of the dynamics due to short-term synaptic depression, leading to transitions between quasi-stable point attractor states in a sequence that depends on the history of stimuli. To better understand these behaviors, we study a minimal model, which characterizes multiple fixed points and transitions between them in response to stimuli with diverse time- and amplitude-dependencies. The interplay between the fast dynamics of firing rate and synaptic responses and the slower timescale of synaptic depression makes the neural activity sensitive to the amplitude and duration of square-pulse stimuli in a nontrivial, history-dependent manner. Weak cross-couplings further deform the basins of attraction for different fixed points into intricate shapes. We find that while short-term synaptic depression can reduce the total number of stable fixed points in a network, it tends to strongly increase the number of fixed points visited upon repetitions of fixed stimuli. Our analysis provides a natural explanation for the system’s rich responses to stimuli of different durations and amplitudes while demonstrating the encoding capability of bistable neural populations for dynamical features of incoming stimuli.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Alexey N. Pyrkov ◽  
Tim Byrnes ◽  
Valentin V. Cherny

It was recently shown that the nonlinear Schrodinger equation with a simplified dissipative perturbation features a zero-velocity solitonic solution of non-zero amplitude which can be used in analogy to attractors of Hopfield’s associative memory. In this work, we consider a more complex dissipative perturbation adding the effect of two-photon absorption and the quintic gain/loss effects that yields the complex Ginzburg–Landau equation (CGLE). We construct a perturbation theory for the CGLE with a small dissipative perturbation, define the behavior of the solitonic solutions with parameters of the system and compare the solution with numerical simulations of the CGLE. We show, in a similar way to the nonlinear Schrodinger equation with a simplified dissipation term, a zero-velocity solitonic solution of non-zero amplitude appears as an attractor for the CGLE. In this case, the amplitude and velocity of the solitonic fixed point attractor does not depend on the quintic gain/loss effects. Furthermore, the effect of two-photon absorption leads to an increase in the strength of the solitonic fixed point attractor.


2019 ◽  
Author(s):  
Bolun Chen ◽  
Paul Miller

AbstractNeural populations with strong excitatory recurrent connections can support bistable states in their mean firing rates. Multiple fixed points in a network of such bistable units can be used to model memory retrieval and pattern separation. The stability of fixed points may change on a slower timescale than that of the dynamics due to short-term synaptic depression, leading to transitions between quasi-stable point attractor states in a sequence that depends on the history of stimuli. To better understand these behaviors, we study a minimal model, which characterizes multiple fixed points and transitions between them in response to stimuli with diverse time- and amplitude-dependences. The interplay between the fast dynamics of firing rate and synaptic responses and the slower timescale of synaptic depression makes the neural activity sensitive to the amplitude and duration of square-pulse stimuli in a non-trivial, history-dependent manner. Weak cross-couplings further deform the basins of attraction for different fixed points into intricate shapes. Our analysis provides a natural explanation for the system’s rich responses to stimuli of different durations and amplitudes while demonstrating the encoding capability of bistable neural populations for dynamical features of incoming stimuli.


10.29007/6czp ◽  
2018 ◽  
Author(s):  
Patrick Musau ◽  
Taylor T. Johnson

This manuscript presents a description and implementation of two benchmark problems for continuous-time recurrent neural network (RNN) verification. The first problem deals with the approximation of a vector field for a fixed point attractor located at the origin, whereas the second problem deals with the system identification of a forced damped pendulum. While the verification of neural networks is complicated and often impenetrable to the majority of verification techniques, continuous-time RNNs represent a class of networks that may be accessible to reachability methods for nonlinear ordinary differential equations (ODEs) derived originally in biology and neuroscience. Thus, an understanding of the behavior of a RNN may be gained by simulating the nonlinear equations from a diverse set of initial conditions and inputs, or considering reachability analysis from a set of initial conditions. The verification of continuous-time RNNs is a research area that has received little attention and if the research community can achieve meaningful results in this domain, then this class of neural networks may prove to be a superior approach in solving complex problems compared to other network architectures.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Weerapat Pittayakanchit ◽  
Zhiyue Lu ◽  
Justin Chew ◽  
Michael J Rust ◽  
Arvind Murugan

Many organisms use free running circadian clocks to anticipate the day night cycle. However, others organisms use simple stimulus-response strategies (‘hourglass clocks’) and it is not clear when such strategies are sufficient or even preferable to free running clocks. Here, we find that free running clocks, such as those found in the cyanobacterium Synechococcus elongatus and humans, can efficiently project out light intensity fluctuations due to weather patterns (‘external noise’) by exploiting their limit cycle attractor. However, such limit cycles are necessarily vulnerable to ‘internal noise’. Hence, at sufficiently high internal noise, point attractor-based ‘hourglass’ clocks, such as those found in a smaller cyanobacterium with low protein copy number, Prochlorococcus marinus, can outperform free running clocks. By interpolating between these two regimes in a diverse range of oscillators drawn from across biology, we demonstrate biochemical clock architectures that are best suited to different relative strengths of external and internal noise.


Sign in / Sign up

Export Citation Format

Share Document