scholarly journals An optimal replacement policy for a two-component series system assuming geometric process repair

2007 ◽  
Vol 54 (2) ◽  
pp. 192-202 ◽  
Author(s):  
Guan Jun Wang ◽  
Yuan Lin Zhang
2005 ◽  
Vol 42 (01) ◽  
pp. 1-14 ◽  
Author(s):  
Lam Yeh

In this paper, we study a monotone process maintenance model for a multistate system with k working states and ℓ failure states. By making different assumptions, we can apply the model to a multistate deteriorating system as well as to a multistate improving system. We show that the monotone process model for a multistate system is equivalent to a geometric process model for a two-state system. Then, for both the deteriorating and the improving system, we analytically determine an optimal replacement policy for minimizing the long-run average cost per unit time.


Author(s):  
DAVID D. HANAGAL ◽  
RUPALI A. KANADE

We consider two repair-replacement policies for a cold standby system consisting of two components with a single repairman. It is assumed that each component after repair is not "as good as new". With this assumption by using geometric process we developed two replacement policies based on the number of down times of the component-1. Our problem is to choose optimal replacement policy (k) such that the long run expected reward per unit time of the system maximized. The mathematical expressions for the long run expected reward per unit time are evaluated and corresponding optimal replacement policies are obtained theoretically with numerical example and by simulation study. Also we have discussed Newton–Raphson method to find optimal k.


2005 ◽  
Vol 42 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Lam Yeh

In this paper, we study a monotone process maintenance model for a multistate system with k working states and ℓ failure states. By making different assumptions, we can apply the model to a multistate deteriorating system as well as to a multistate improving system. We show that the monotone process model for a multistate system is equivalent to a geometric process model for a two-state system. Then, for both the deteriorating and the improving system, we analytically determine an optimal replacement policy for minimizing the long-run average cost per unit time.


1994 ◽  
Vol 31 (4) ◽  
pp. 1123-1127 ◽  
Author(s):  
Yuan Lin Zhang

In this paper, a repairable system consisting of one unit and a single repairman is studied. Assume that the system after repair is not as good as new. Under this assumption, a bivariate replacement policy (T, N), where T is the working age and N is the number of failures of the system is studied. The problem is to determine the optimal replacement policy (T, N)∗such that the long-run average cost per unit time is minimized. The explicit expression of the long-run average cost per unit time is derived, and the corresponding optimal replacement policy can be determined analytically or numerically. Finally, under some conditions, we show that the policy (T, N)∗ is better than policies N∗ or T∗.


2001 ◽  
Vol 38 (02) ◽  
pp. 542-553 ◽  
Author(s):  
Ji Hwan Cha

In this paper two burn-in procedures for a general failure model are considered. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair or a complete repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. During a burn-in process, with burn-in Procedure I, the failed component is repaired completely regardless of the type of failure, whereas, with burn-in Procedure II, only minimal repair is done for the Type I failure and a complete repair is performed for the Type II failure. In field use, the component is replaced by a new burned-in component at the ‘field use age’ T or at the time of the first Type II failure, whichever occurs first. Under the model, the problems of determining optimal burn-in time and optimal replacement policy are considered. The two burn-in procedures are compared in cases when both the procedures are applicable.


Sign in / Sign up

Export Citation Format

Share Document