scholarly journals An ISPH scheme for numerical simulation of multiphase flows with complex interfaces and high density ratios

2018 ◽  
Vol 75 (8) ◽  
pp. 2658-2677 ◽  
Author(s):  
Massoud Rezavand ◽  
Mohammad Taeibi-Rahni ◽  
Wolfgang Rauch
2014 ◽  
Vol 93 ◽  
pp. 1-17 ◽  
Author(s):  
Amir Banari ◽  
Christian Janßen ◽  
Stephan T. Grilli ◽  
Manfred Krafczyk

Author(s):  
Laura Schaefer ◽  
Michael Ikeda ◽  
Jie Bao

The lattice Boltzmann equation (LBE) method is a promising technique for simulating fluid flows and modeling complex physics. Because the LBE model is based on microscopic models and mesoscopic kinetic equations, it offers many advantages for the study of multi-component or multiphase flows. However, there are still challenges encountered when dealing with thermal effects and multiphase flows, particularly at small scales or in varying geometries. In this paper, we discuss some techniques to overcome these challenges. First, we present an overview of the LBE method, and show how it can be extended to model multiple phases and thermal effects. Next, we describe our multi-component and multiphase (MCMP) LBE method for high density ratios. While the original formulation of Shan and Chen’s (SC) model can incorporate some multiphase and component scenarios, the density ratio of the different components is restricted (less than approximately 2.0), which limits the applications. Hence, based on the SC model and improvements in the single-component multiphase (SCMP) flow model reported by Yuan and Schaefer, we have developed a new model that can simulate a MCMP system with a high density ratio. An example of that system is shown. Finally, we have developed a parallel computation LBE method based on the Compute Unified Device Architecture for NVIDIA GPUs. Using this method, we are able to efficiently model a number of phases and length scales, examples of which are presented.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 434
Author(s):  
Assetbek Ashirbekov ◽  
Bagdagul Kabdenova ◽  
Ernesto Monaco ◽  
Luis R. Rojas-Solórzano

The original Shan-Chen’s pseudopotential Lattice Boltzmann Model (LBM) has continuously evolved during the past two decades. However, despite its capability to simulate multiphase flows, the model still faces challenges when applied to multicomponent-multiphase flows in complex geometries with a moderately high-density ratio. Furthermore, classical cubic equations of state usually incorporated into the model cannot accurately predict fluid thermodynamics in the near-critical region. This paper addresses these issues by incorporating a crossover Peng–Robinson equation of state into LBM and further improving the model to consider the density and the critical temperature differences between the CO2 and water during the injection of the CO2 in a water-saturated 2D homogeneous porous medium. The numerical model is first validated by analyzing the supercritical CO2 penetration into a single narrow channel initially filled with H2O, depicting the fundamental role of the driving pressure gradient to overcome the capillary resistance in near one and higher density ratios. Significant differences are observed by extending the model to the injection of CO2 into a 2D homogeneous porous medium when using a flat versus a curved inlet velocity profile.


Sign in / Sign up

Export Citation Format

Share Document