Numerical Simulation of Reactive Multiphase Flows in Porous Media Using Lattice Boltzmann Method

Author(s):  
Fang Xin ◽  
Xunfeng Li ◽  
Min Xu ◽  
Xiulan L. Huai ◽  
Zhendong Cui
2016 ◽  
Vol 27 (04) ◽  
pp. 1650037 ◽  
Author(s):  
Pietro Prestininzi ◽  
Andrea Montessori ◽  
Michele La Rocca ◽  
Sauro Succi

It is shown that the single relaxation time (SRT) version of the Lattice Boltzmann (LB) equation permits to compute the permeability of Darcy’s flows in porous media within a few percent accuracy. This stands in contrast with previous claims of inaccuracy, which we relate to the lack of recognition of the physical dependence of the permeability on the Knudsen number.


2015 ◽  
Vol 18 (3) ◽  
pp. 707-722 ◽  
Author(s):  
Daniele Chiappini ◽  
Gino Bella ◽  
Alessio Festuccia ◽  
Alessandro Simoncini

AbstractIn this paper Lattice Boltzmann Method (LBM) has been used in order to perform Direct Numerical Simulation (DNS) for porous media analysis. Among the different configurations of porous media, open cell metallic foams are gaining a key role for a large number of applications, like heat exchangers for high performance cars or aeronautic components as well. Their structure allows improving heat transfer process with fruitful advantages for packaging issues and size reduction. In order to better understand metallic foam capabilities, a random sphere generation code has been implemented and fluid-dynamic simulations have been carried out by means of a kinetic approach. After having defined a computational domain the Reynolds number influence has been studied with the aim of characterizing both pressure drop and friction factor throughout a finite foam volume. In order to validate the proposed model, a comparison analysis with experimental data has been carried out too.


Sign in / Sign up

Export Citation Format

Share Document