density ratios
Recently Published Documents


TOTAL DOCUMENTS

409
(FIVE YEARS 80)

H-INDEX

38
(FIVE YEARS 6)

2022 ◽  
Author(s):  
SANBON GOSA ◽  
Bogale Abebe Gebeyo ◽  
Ravitejas Patil ◽  
Ramon Mencia ◽  
Menachem Moshelion

Key physiological traits of plants, such as transpiration and stomatal conductance, are usually studied under steady-state conditions or modeled using only a few measured data points. Those measurements do not reflect the dynamic behavior of the plant in response to field conditions. To overcome this bottleneck, we used a gravimetric functional phenotyping platform and a reverse-phenotyping method to examine the dynamic whole-plant water regulation responses of tomato introgression lines and compared those responses with several years of yield performance in commercial fields. Ideotype lines had highly plastic stomatal conductance and high abaxial to adaxial stomatal density ratios and the size of their stomatal apertures peaked early in the day under water-deficit conditions. These traits resulted in dynamic daily water-use efficiency, which allowed for the rapid recovery of transpiration when irrigation was resumed after a period of imposed drought. We found that stomatal density, the abaxial to adaxial stomatal density ratio and the time of maximum stomatal apertures are crucial for plant adaptation and productivity under drought stress conditions. Abaxial stomatal density was also found to be strongly correlated with the expression of the stomatal-development genes SPCH and ZEP. This study demonstrates how a reverse functional phenotyping approach based on field yield data, continuous and simultaneous whole plant waterbalance measurements and anatomical examination of individual leaves can help us to understand and identify dynamic and complex yield-related physiological traits.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu-Ting Chu ◽  
Paul B. Brown

Integrated aquaponic food production systems are capable of producing more food on less land using less water than conventional food systems, and marine systems offer the potential of conserving freshwater resources. However, there have been few evaluations of species combinations or operational parameters in marine aquaponics. The goal of this experiment was evaluation of stocking density ratio of Pacific whiteleg shrimp (Litopenaeus vannamei) to three edible halophytes (Atriplex hortensis, Salsola komarovii, and Plantago coronopus) with two C/N ratios in a 3 × 2 factorial design. There were three stocking density ratios (shrimp: plant), 2:1, 3:1, and 5:1; and two C/N ratios, 12 and 15. The results indicated that stocking density ratio exerted a significant impact on shrimp growth. Shrimp reared in 2:1 and 3:1 treatments had better growth performance. In contrast, plants were affected by both stocking density ratio and C/N ratio. Halophytes grown in stocking density ratios of 3:1 and 5:1 with a C/N ratio of 15 had better growth performance and nutrient content. The concentrations of TAN and NO2– were below 0.2 mg/L throughout the experiment, including the higher stocking density ratio treatments. In conclusion, the stocking density ratio of 3:1 with a C/N ratio of 15 was suggested as the optimal condition for the operation of marine aquaponics in which whiteleg shrimp and the three halophytes are target crops.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 434
Author(s):  
Assetbek Ashirbekov ◽  
Bagdagul Kabdenova ◽  
Ernesto Monaco ◽  
Luis R. Rojas-Solórzano

The original Shan-Chen’s pseudopotential Lattice Boltzmann Model (LBM) has continuously evolved during the past two decades. However, despite its capability to simulate multiphase flows, the model still faces challenges when applied to multicomponent-multiphase flows in complex geometries with a moderately high-density ratio. Furthermore, classical cubic equations of state usually incorporated into the model cannot accurately predict fluid thermodynamics in the near-critical region. This paper addresses these issues by incorporating a crossover Peng–Robinson equation of state into LBM and further improving the model to consider the density and the critical temperature differences between the CO2 and water during the injection of the CO2 in a water-saturated 2D homogeneous porous medium. The numerical model is first validated by analyzing the supercritical CO2 penetration into a single narrow channel initially filled with H2O, depicting the fundamental role of the driving pressure gradient to overcome the capillary resistance in near one and higher density ratios. Significant differences are observed by extending the model to the injection of CO2 into a 2D homogeneous porous medium when using a flat versus a curved inlet velocity profile.


2021 ◽  
Vol 922 (2) ◽  
pp. 152
Author(s):  
Kotomi Taniguchi ◽  
Liton Majumdar ◽  
Adele Plunkett ◽  
Shigehisa Takakuwa ◽  
Dariusz C. Lis ◽  
...  

Abstract We have analyzed Atacama Large Millimeter/submillimeter Array Cycle 4 Band 6 data toward two young stellar objects (YSOs), Oph-emb5 and Oph-emb9, in the Ophiuchus star-forming region. The YSO Oph-emb5 is located in a relatively quiescent region, whereas Oph-emb9 is irradiated by a nearby bright Herbig Be star. Molecular lines from cyclic-C3H2 (c-C3H2), H2CO, CH3OH, 13CO, C18O, and DCO+ have been detected from both sources, while DCN is detected only in Oph-emb9. Around Oph-emb5, c-C3H2 is enhanced at the west side, relative to the IR source, whereas H2CO and CH3OH are abundant at the east side. In the field of Oph-emb9, moment 0 maps of the c-C3H2 lines show a peak at the eastern edge of the field of view, which is irradiated by the Herbig Be star. Moment 0 maps of CH3OH and H2CO show peaks farther from the bright star. We derive the N(c-C3H2)/N(CH3OH) column density ratios at the peak positions of c-C3H2 and CH3OH near each YSO, which are identified based on their moment 0 maps. The N(c-C3H2)/N(CH3OH) ratio at the c-C3H2 peak is significantly higher than at the CH3OH peak by a factor of ∼19 in Oph-emb9, while the difference in this column density ratio between these two positions is a factor of ∼2.6 in Oph-emb5. These differences are attributed to the efficiency of the photon-dominated region chemistry in Oph-emb9. The higher DCO+ column density and the detection of DCN in Oph-emb9 are also discussed in the context of UV irradiation flux.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 402
Author(s):  
Michel Bergmann ◽  
Lisl Weynans

An Eulerian method to numerically solve incompressible bifluid problems with high density ratio is presented. This method can be considered as an improvement of the Ghost Fluid method, with the specificity of a sharp second-order numerical scheme for the spatial resolution of the discontinuous elliptic problem for the pressure. The Navier–Stokes equations are integrated in time with a fractional step method based on the Chorin scheme and discretized in space on a Cartesian mesh. The bifluid interface is implicitly represented using a level-set function. The advantage of this method is its simplicity to implement in a standard monofluid Navier–Stokes solver while being more accurate and conservative than other simple classical bifluid methods. The numerical tests highlight the improvements obtained with this sharp method compared to the reference standard first-order methods.


2021 ◽  
Vol 928 ◽  
Author(s):  
Yu Liang ◽  
Lili Liu ◽  
Zhigang Zhai ◽  
Juchun Ding ◽  
Ting Si ◽  
...  

Shock-tube experiments on eight kinds of two-dimensional multi-mode air–SF $_6$ interface with controllable initial conditions are performed to examine the dependence of perturbation growth on initial spectra. We deduce and demonstrate experimentally that the amplitude development of each mode is influenced by the mode-competition effect from quasi-linear stages. It is confirmed that the mode-competition effect is closely related to initial spectra, including the wavenumber, the phase and the initial amplitude of constituent modes. By considering both the mode-competition effect and the high-order harmonics effect, a nonlinear model is established based on initial spectra to predict the amplitude growth of each individual mode. The nonlinear model is validated by the present experiments and data in the literature by considering diverse initial spectra, shock intensities and density ratios. Moreover, the nonlinear model is successfully extended based on the superposition principle to predict the growths of the total perturbation width and the bubble/spike width from quasi-linear to nonlinear stages.


2021 ◽  
Vol 654 ◽  
pp. L1
Author(s):  
L. F. Rodríguez-Almeida ◽  
V. M. Rivilla ◽  
I. Jiménez-Serra ◽  
M. Melosso ◽  
L. Colzi ◽  
...  

Context. Little is known about the chemistry of isocyanates (compounds with the functional group R-N=C=O) in the interstellar medium (ISM), as only four of them have been detected so far: isocyanate radical (NCO), isocyanic acid (HNCO), N-protonated isocyanic acid (H2NCO+), and methyl isocyanate (CH3NCO). The molecular cloud G+0.693-0.027, located in the Galactic Centre, represents an excellent candidate to search for new isocyanates since it exhibits high abundances of the simplest ones, HNCO and CH3NCO. Aims. After CH3NCO, the next most complex isocyanates are ethyl isocyanate (C2H5NCO) and vinyl isocyanate (C2H3NCO). Their detection in the ISM would enhance our understanding of the formation of these compounds in space. Methods. We have searched for C2H5NCO, H2NCO+, C2H3NCO, and cyanogen isocyanate (NCNCO) in a sensitive unbiased spectral survey carried out in the 2 mm and 7 mm radio windows using the IRAM 30m and Yebes 40m radio telescopes, respectively. Results. We have detected C2H5NCO and H2NCO+ towards G+0.693-0.027 (the former for the first time in the ISM) with molecular abundances of (4.7–7.3) × 10−11 and (1.0–1.5) × 10−11, respectively. A ratio of CH3NCO/C2H5NCO = 8 ± 1 is obtained; therefore, the relative abundance determined for HNCO:CH3NCO:C2H5NCO is 1:1/55:1/447, which implies a decrease by more than one order of magnitude, going progressively from HNCO to CH3NCO and to C2H5NCO. This is similar to what has been found for alcohols and thiols, for example, and suggests that C2H5NCO is likely formed on the surface of dust grains. In addition, we have obtained column density ratios of HNCO/NCO > 269, HNCO/H2NCO+ ∼ 2100, and C2H3NCO/C2H5NCO < 4. A comparison of the methyl/ethyl ratios for isocyanates (-NCO), alcohols (-OH), formiates (HCOO-), nitriles (-CN), and thiols (-SH) is performed and shows that ethyl derivatives may be formed more efficiently for the N-bearing molecules than for the O- and S-bearing molecules.


2021 ◽  
Vol 927 ◽  
Author(s):  
Jelle B. Will ◽  
Dominik Krug

The goal of this study is to elucidate the effect the particle moment of inertia (MOI) has on the dynamics of spherical particles rising in a quiescent and turbulent fluid. To this end, we performed experiments with varying density ratios $\varGamma$ , the ratio of the particle density and fluid density, ranging from $0.37$ up to $0.97$ . At each $\varGamma$ the MOI was varied by shifting mass between the shell and the centre of the particle to vary $I^*$ (the particle MOI normalised by the MOI of a particle with the same weight and a uniform mass distribution). Helical paths are observed for low, and ‘three-dimensional (3-D) chaotic’ trajectories at higher values of $\varGamma$ . The present data suggest no influence of $I^*$ on the critical value for this transition $0.42<\varGamma _{{crit}}<0.52$ . For the ‘3-D chaotic’ rise mode, we identify trends of decreasing particle drag coefficient ( $C_d$ ) and amplitude of oscillation with increasing $I^*$ . Due to limited data it remains unclear if a similar dependence exists in the helical regime as well. Path oscillations remain finite for all cases studied and no ‘rectilinear’ mode is encountered, which may be the consequence of allowing for a longer transient distance in the present compared with earlier work. Rotational dynamics did not vary significantly between quiescent and turbulent surroundings, indicating that for the present configuration these are predominantly wake driven.


Sign in / Sign up

Export Citation Format

Share Document