scholarly journals Fast CO2 hydrogenation to formic acid catalyzed by an Ir(PSiP) pincer hydride in a DMSO/water/ionic liquid solvent system

2020 ◽  
Vol 146 ◽  
pp. 106125
Author(s):  
Rodrigo Webber ◽  
Muhammad I. Qadir ◽  
Eduardo Sola ◽  
Marta Martín ◽  
Elizabeth Suárez ◽  
...  
2020 ◽  
Vol 17 (8) ◽  
pp. 603-612
Author(s):  
Prashant Gautam ◽  
Vivek Srivastava

A series of alumina supported Ru nanoparticles (Ru γ -Al2O3-x (x=2-10 Ru wt%) was synthesized using the ethylene glycol reduction method. XRD, TEM, EDX, H2-chemisorption, XPS and H2-TPD analytical techniques were used to understand the physiochemical nature of alumina supported Ru nanoparticles. All the well-characterized Ru#Al2O3-x (x=2-10 Ru wt%) catalysts were used for high-pressure CO2 hydrogenation to formic acid synthesis. A clear correlation was recorded between the physiochemical properties of developed catalysts and the molar quantity of formic acid. Among all the developed catalysts, Ru#Al2O3-2 catalyst with or without ionic liquid reaction medium gave a good molar quantity of formic acid. Application of ionic liquid was also expanded, and ionic liquid medium appeared as a good solvent system as compared to the amine solvent system, which not only provides better solubility of reactants and catalysts but also found useful in the easy recovery of formic acid after the completion of the reaction. The catalyst recycled seven times with easy product isolation stem to make this system very useful and fulfill the requirement of sustainable chemistry.


Holzforschung ◽  
2018 ◽  
Vol 72 (12) ◽  
pp. 1025-1030
Author(s):  
Mafuyu Saito ◽  
Takao Kishimoto ◽  
Masahiro Hamada ◽  
Noriyuki Nakajima ◽  
Daisuke Urabe

AbstractConversion of lignocellulose into useful chemicals is an important research topic in the area of biomass utilization. In this study, microcrystalline cellulose (MC) was dissolved in a mixed-solvent system containing the ionic liquid (IL) 1-allyl-3-methylimidazolium chloride ([Amim]Cl) andN-methyl-pyrrolidone (NMP), and the cellulose was directly converted into methyl glucoside (MG) by acid-catalyzed methanolysis aided by microwave irradiation (μWIr). Under moderate reaction temperature and pressure, and in the presence of acetyl chloride/methanol (in situformed HCl) as an acid catalyst, MG was obtained in a 42% yield. In contrast, in the absence of either IL or μWIr, the MG yield was only 5 or 21%, respectively. Both μWIr and the dissolution of cellulose in IL were quite effective for the conversion of cellulose into MG.


2019 ◽  
Vol 58 (16) ◽  
pp. 6333-6339 ◽  
Author(s):  
Yunyan Wu ◽  
Yanfei Zhao ◽  
Huan Wang ◽  
Bo Yu ◽  
Xiaoxiao Yu ◽  
...  

2019 ◽  
Vol 16 (5) ◽  
pp. 396-408
Author(s):  
Vivek Srivastava

We developed a series of new hydrotalcite functionalized Ru catalytic system to synthesize formic acid via CO2 hydrogenation reaction. Advance analytical procedures like FTIR, N2 physisorption, ICP-OES, XPS, and TEM analysis were applied to understand the physiochemical nature of functionalized hydrotalcite materials. This well-analyzed system was used as catalysts for CO2 hydrogenation reaction (with and without ionic liquid medium). Ru metal containing functionalized hydrotalcite materials were found highly active catalysts for formic acid synthesis via hydrogenation reaction. The concern of catalyst stability was studied via catalysts leaching and recycling experiments. We recycled the ionic liquid mediated functionalized hydrotalcite catalytic system up to 8 runs without any significant loss of catalytic activity. Surprisingly, no sign of catalyst leaching was recorded during the catalyst recycling experiment.


ChemCatChem ◽  
2010 ◽  
Vol 2 (10) ◽  
pp. 1265-1270 ◽  
Author(s):  
Jackson D. Scholten ◽  
Martin H. G. Prechtl ◽  
Jairton Dupont

2006 ◽  
Vol 8 (23) ◽  
pp. 2779 ◽  
Author(s):  
Wei Chen ◽  
Jaemin Kim ◽  
Shouheng Sun ◽  
Shaowei Chen

1971 ◽  
Vol 49 (14) ◽  
pp. 2455-2459 ◽  
Author(s):  
Y. Y. Lim ◽  
A. R. Stein

The acid-catalyzed hydrolysis of methyl isonitrile has been examined. The initial hydrolysis product is N-methylformamide which is further hydrolyzed to methyl amine and formic acid at a much slower rate. The hydrolysis to N-methylformamide is pseudo-first order in methyl isonitrile and shows a linear rate dependence on concentration of general (buffer) acid at fixed pH. The significance of general acid-catalysis in terms of the mechanism of the hydrolysis is considered and taken as evidence for carbon protonation rather than nitrogen protonation as the initiating step.


2018 ◽  
Vol 57 (22) ◽  
pp. 14186-14198 ◽  
Author(s):  
Jairo Fidalgo ◽  
Margarita Ruiz-Castañeda ◽  
Gabriel García-Herbosa ◽  
Arancha Carbayo ◽  
Félix A. Jalón ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document