Effects of taxol treatment on the microtubular system and mitochondria of Tetrahymena

2007 ◽  
Vol 31 (7) ◽  
pp. 724-732 ◽  
Author(s):  
P KOVACS ◽  
G CSABA ◽  
E PALLINGER ◽  
R CZAKER
Keyword(s):  
1969 ◽  
Vol 5 (2) ◽  
pp. 479-493 ◽  
Author(s):  
J. D. DODGE ◽  
R. M. CRAWFORD

The eyespot of the marine dinoflagellate Glenodinium foliaceum is a flattened orange structure, more or less trapezoid in shape with an anterior hook-like projection. It is situated on the ventral side of the organism in the vicinity of the flagellar bases at the anterior end of the sulcus. In the electron microscope the eyespot is seen to contain two layers of osmiophilic granules 80-200 nm in diameter which usually show hexagonal close-packing. The eyespot is surrounded by a triple-membraned envelope and is not connected to any other organelle. Adjacent to the eyespot is a distinctive organelle termed the ‘lamellar body’. This consists of a stack of up to 50 flattened vesicles or disks, each 16 nm thick and about 750 nm wide, the whole being orientated in an antero-posterior direction. The lamellae are continuous, at the ends of the stack, with rough endoplasmic reticulum and are joined together by occasional bridges at their edges. The bases of the two flagella lie just ventral to the lamellar body and from them roots arise which pass by the eyespot and join the subthecal microtubular system. The eyespot of Glenodinium is unique both in structure and the presence of the associated lamellar body. It differs from eyespots which have been described from other algal groups and also from the more complex ocellus found in certain dinoflagellates belonging to the order Warnowiaceae. The method by which the eyespot functions is discussed and it is suggested that unidirectional stimuli could be perceived by shading of the lamellar body.


2001 ◽  
Vol 114 (13) ◽  
pp. 2427-2435 ◽  
Author(s):  
Bunshiro Goto ◽  
Koei Okazaki ◽  
Osami Niwa

Chromosomes are not packed randomly in the nucleus. The Rabl orientation is an example of the non-random arrangement of chromosomes, centromeres are grouped in a limited area near the nuclear periphery and telomeres are located apart from centromeres. This orientation is established during mitosis and maintained through subsequent interphase in a range of species. We report that a Rabl-like configuration can be formed de novo without a preceding mitosis during the transition from the sexual phase to the vegetative phase of the life cycle in fission yeast. In this process, each of the dispersed centromeres is often associated with a novel Sad1-containing body that is contacting a cytoplasmic microtubule laterally (Sad1 is a component of the spindle pole body (SPB)). The Sad1-containing body was colocalized with other known SPB components, Kms1 and Spo15 but not with Cut12, indicating that it represents a novel SPB-related complex. The existence of the triplex structure (centromere-microtubule-Sad1 body) suggests that the clustering of centromeres is controlled by a cytoplasmic microtubular system. Accordingly, when microtubules are destabilized, clustering is markedly reduced.


1990 ◽  
Vol 259 (5) ◽  
pp. G736-G744 ◽  
Author(s):  
R. Lenzen ◽  
V. J. Hruby ◽  
N. Tavoloni

The present studies were carried out to clarify the mechanism of glucagon choleresis in guinea pigs. At the infusion rate of 1.4 nmol.min-1.kg-1, glucagon increased bile flow from 206.6 +/- 14.3 to 302.6 +/- 35.0 microliters.min-1.kg-1 and bicarbonate biliary concentration from 63.7 +/- 4.2 to 75.5 +/- 5.9 meq/l. Measurements of bile acid excretion in bile, the biliary tree volume, and of the hormone choleretic effect in guinea pigs with proliferated bile ductules/ducts induced by alpha-naphthylisothiocyanate feeding indicated that glucagon, unlike secretin, stimulated canalicular bile flow. Inhibition of prostaglandin synthesis by indomethacin administration (5 mg.kg-1.h-1) did not modify the choleretic effect of glucagon, and infusion of a glucagon analogue (TH-glucagon, 1.4 nmol.min-1.kg-1), which did not increase hepatic formation of adenosine 3'5'-cyclic monophosphate (cAMP), failed to stimulate bile flow. Like the parent hormone, however, TH-glucagon augmented plasma glucose levels and stimulated formation of inositol phosphates. Colchicine pretreatment (0.5 mg/kg ip) almost entirely prevented the choleretic effect of glucagon but did not modify spontaneous and bile acid-induced bile flow and the stimulatory effect of the hormone on glucose release and on hepatic formation of cAMP and inositol phosphates. Finally, glucagon produced a large increase in the biliary entry of horseradish peroxidase, even though this effect was transient and was not coupled to the increase in bile flow. These results indicate that glucagon choleresis in the guinea pig is not secondary to prostaglandin release, is canalicular in origin, involves bicarbonate secretion, is mediated by cAMP, and requires an intact microtubular system.


Sign in / Sign up

Export Citation Format

Share Document