glucose levels
Recently Published Documents


TOTAL DOCUMENTS

8228
(FIVE YEARS 3092)

H-INDEX

113
(FIVE YEARS 16)

2024 ◽  
Vol 84 ◽  
Author(s):  
B. Khan ◽  
A. Ullah ◽  
M.A. Khan ◽  
A. Amin ◽  
M. Iqbal ◽  
...  

Abstract Diabetes mellitus (DM), an endocrine syndrome characterized by high blood glucose levels due to abrogated insulin activity. The existing treatments for DM have side effects and varying degrees of efficacy. Therefore, it is paramount that novel approaches be developed to enhance the management of DM. Therapeutic plants have been accredited as having comparatively high efficacy with fewer adverse effects. The current study aims to elucidate the phytochemical profile, anti-hyperlipidemic, and anti-diabetic effects of methanolic extract D. salicifolia (leaves) in Alloxan-induced diabetic mice. Alloxan was injected intraperitoneally (150 mg kg-1, b.w), to induced diabetes in mice. The mice were divided into three groups (n=10). Group 1 (normal control) received normal food and purified water, Group II (diabetic control) received regular feed and clean water and group III (diabetic treated) received a methanolic extract of the plant (300 mg kg-1) for 28 days with a typical diet and clean water throughout the experiment. Blood samples were collected to checked serum glucose and concentration of LDL, TC, TG. The extract demonstrated significant antihyperglycemic activity (P<0.05), whereas improvements in mice's body weight and lipid profiles were observed after treatment with the extract. This study establishes that the extract has high efficacy with comparatively less toxicity that can be used for DM management.


Trials ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Tao Yuan ◽  
Hongyu He ◽  
Yuepeng Liu ◽  
Jianwei Wang ◽  
Xin Kang ◽  
...  

Abstract Background Blood glucose levels that are too high or too low after traumatic brain injury (TBI) negatively affect patient prognosis. This study aimed to demonstrate the relationship between blood glucose levels and the Glasgow Outcome Score (GOS) in TBI patients. Methods This study was based on a randomized, dual-center, open-label clinical trial. A total of 208 patients who participated in the randomized controlled trial were followed up for 5 years. Information on the disease, laboratory examination, insulin therapy, and surgery for patients with TBI was collected as candidate variables according to clinical importance. Additionally, data on 5-year and 6-month GOS were collected as primary and secondary outcomes, respectively. For multivariate analysis, a generalized additive model (GAM) was used to investigate relationships between blood glucose levels and GOS. The results are presented as odds ratios (ORs) with 95% confidence intervals (95% CIs). We further applied a two- piecewise linear regression model to examine the threshold effect of blood glucose level and GOS. Results A total of 182 patients were included in the final analysis. Multivariate GAM analysis revealed that a bell-shaped relationship existed between average blood glucose level and 5-year GOS score or 6-month GOS score. The inflection points of the average blood glucose level were 8.81 (95% CI: 7.43–9.48) mmol/L considering 5-year GOS as the outcome and were 8.88 (95% CI 7.43−9.74) mmol/L considering 6-month GOS score as the outcome. The same analysis revealed that there was also a bell relationship between average blood glucose levels and the favorable outcome group (GOS score ≥ 4) at 5 years or 6 months. Conclusion In a population of patients with traumatic brain injury, blood glucose levels were associated with the GOS. There was also a threshold effect between blood glucose levels and the GOS. A blood glucose level that is either too high or too low conveys a poor prognosis. Trial registration ClinicalTrials.gov NCT02161055. Registered on 11 June 2014.


2022 ◽  
Vol 8 (4) ◽  
pp. 263-266
Author(s):  
Raja Chakraverty ◽  
Debalina Sardar ◽  
Pranabesh Chakraborty

The study is aimed at the evaluation of potential activity of and possible interaction with metformin in animal Models of Diabetes Mellitus. Study objectives include study the anti-diabetic effect of for Diabetes Mellitus in animal models and also to study the effect of Abelmoschus esculentus with metformin and explore any interaction. Plant material was collected () followed by extraction of plant materials () Exudate collection of and activity test study was done (acute toxicity study, according to standard OECD guidelines) Experimental animals were divided into groups. Dosing was done for 28 days. Biochemical parameters were studied. Histopathology studies are done. Results showed that in this study administrations of Abelmoschus esculentus extract (2000mg/kg body weight) Metformin with extract (5mg/kg b.w. and 2000mg/kg body weight and Metformin 5mg/kg body weight decreased elevated blood glucose levels significantly from first to fourth week compared to diabetic control rats and showed minimal safety concerns.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 366
Author(s):  
Su Hyun Park ◽  
Jiali Yao ◽  
Xin Hui Chua ◽  
Suresh Rama Chandran ◽  
Daphne S. L. Gardner ◽  
...  

We examined how dietary and physical activity behaviors influence fluctuations in blood glucose levels over a seven-day period in people at high risk for diabetes. Twenty-eight participants underwent a mixed meal tolerance test to assess glucose homeostasis at baseline. Subsequently, they wore an accelerometer to assess movement behaviors, recorded their dietary intakes through a mobile phone application, and wore a flash glucose monitoring device that measured glucose levels every 15 min for seven days. Generalized estimating equation models were used to assess the associations of metabolic and lifestyle risk factors with glycemic variability. Higher BMI, amount of body fat, and selected markers of hyperglycemia and insulin resistance from the meal tolerance test were associated with higher mean glucose levels during the seven days. Moderate- to vigorous-intensity physical activity and polyunsaturated fat intake were independently associated with less variation in glucose levels (CV%). Higher protein and polyunsaturated fatty acid intakes were associated with more time-in-range. In contrast, higher carbohydrate intake was associated with less time-in-range. Our findings suggest that dietary composition (a higher intake of polyunsaturated fat and protein and lower intake of carbohydrates) and moderate-to-vigorous physical activity may reduce fluctuations in glucose levels in persons at high risk of diabetes.


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 160
Author(s):  
Katharina Murillo ◽  
Azat Samigullin ◽  
Per M. Humpert ◽  
Thomas Fleming ◽  
Kübra Özer ◽  
...  

C. elegans are used to study molecular pathways, linking high glucose levels (HG) to diabetic complications. Persistent exposure of C. elegans to a HG environment induces the mitochondrial formation of reactive oxygen species (ROS) and advanced glycation endproducts (AGEs), leading to neuronal damage and decreased lifespan. Studies suggest that transient high glucose exposure (TGE) exerts different effects than persistent exposure. Thus, the effects of TGE on ROS, AGE-formation and life span were studied in C. elegans. Four-day TGE (400 mM) as compared to controls (0mM) showed a persistent increase of ROS (4-days 286 ± 40 RLUs vs. control 187 ± 23 RLUs) without increased formation of AGEs. TGE increased body motility (1-day 0.14 ± 0.02; 4-days 0.15 ± 0.01; 6-days 0.16 ± 0.02 vs. control 0.10 ± 0.02 in mm/s), and bending angle (1-day 17.7 ± 1.55; 3-days 18.7 ± 1.39; 6-days 20.3 ± 0.61 vs. control 15.3 ± 1.63 in degree/s) as signs of neuronal damage. Lifespan was increased by 27% (21 ± 2.4 days) after one-day TGE, 34% (22 ± 1.2 days) after four-days TGE, and 26% (21 ± 1.4 days) after six-days TGE vs. control (16 ± 1.3 days). These experiments suggest that TGE in C. elegans has positive effects on life span and neuronal function, associated with mildly increased ROS-formation. From the perspective of metabolic memory, hormetic effects outweighed the detrimental effects of a HG environment.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Yaser Albadr ◽  
Andrew Crowe ◽  
Rima Caccetta

The prevalence of type 2 diabetes mellitus is rising globally and this disease is proposed to be the next pandemic after COVID-19. Although the cause of type 2 diabetes mellitus is unknown, it is believed to involve a complex array of genetic defects that affect metabolic pathways which eventually lead to hyperglycaemia. This hyperglycaemia arises from an inability of the insulin-sensitive cells to sufficiently respond to the secreted insulin, which eventually results in the inadequate secretion of insulin from pancreatic β-cells. Several treatments, utilising a variety of mechanisms, are available for type 2 diabetes mellitus. However, more medications are needed to assist with the optimal management of the different stages of the disease in patients of varying ages with the diverse combinations of other medications co-administered. Throughout modern history, some lead constituents from ancient medicinal plants have been investigated extensively and helped in developing synthetic antidiabetic drugs, such as metformin. Teucrium polium L. (Tp) is a herb that has a folk reputation for its antidiabetic potential. Previous studies indicate that Tp extracts significantly decrease blood glucose levels r and induce insulin secretion from pancreatic β-cells in vitro. Nonetheless, the constituent/s responsible for this action have not yet been elucidated. The effects appear to be, at least in part, attributable to the presence of selected flavonoids (apigenin, quercetin, and rutin). This review aims to examine the reported glucose-lowering effect of the herb, with a keen focus on insulin secretion, specifically related to type 2 diabetes mellitus. An analysis of the contribution of the key constituent flavonoids of Tp extracts will also be discussed.


2022 ◽  
Vol 31 (1) ◽  
pp. 34-39
Author(s):  
Paula Johnston

With more people being diagnosed with diabetes and requiring insulin therapy as they live longer, an increasing number of individuals are needing access to blood and ketone monitoring that is simple to use and provides accurate results. Having access to a bolus advisor is equally important in order for people with diabetes to calculate accurate insulin doses based on the foods that they are eating. The use of app-based technology for healthcare purposes has increased over recent years and now includes the Diabetes:M application that can be used in conjunction with the 4SURE smart meters with no additional cost to the individual.


Biomimetics ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Yixiang Deng ◽  
Hung-yu Chang ◽  
He Li

Diabetes mellitus, a metabolic disease characterized by chronically elevated blood glucose levels, affects about 29 million Americans and more than 422 million adults all over the world. Particularly, type 2 diabetes mellitus (T2DM) accounts for 90–95% of the cases of vascular disease and its prevalence is increasing due to the rising obesity rates in modern societies. Although multiple factors associated with diabetes, such as reduced red blood cell (RBC) deformability, enhanced RBC aggregation and adhesion to the endothelium, as well as elevated blood viscosity are thought to contribute to the hemodynamic impairment and vascular occlusion, clinical or experimental studies cannot directly quantify the contributions of these factors to the abnormal hematology in T2DM. Recently, computational modeling has been employed to dissect the impacts of the aberrant biomechanics of diabetic RBCs and their adverse effects on microcirculation. In this review, we summarize the recent advances in the developments and applications of computational models in investigating the abnormal properties of diabetic blood from the cellular level to the vascular level. We expect that this review will motivate and steer the development of new models in this area and shift the attention of the community from conventional laboratory studies to combined experimental and computational investigations, aiming to provide new inspirations for the development of advanced tools to improve our understanding of the pathogenesis and pathology of T2DM.


Sign in / Sign up

Export Citation Format

Share Document