Influence of oxygen percentage in calcination atmosphere on structure and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries

2019 ◽  
Vol 45 (15) ◽  
pp. 18965-18971 ◽  
Author(s):  
Rui Liang ◽  
Fu-Da Yu ◽  
Kokswee Goh ◽  
Gang Sun ◽  
Min-Jun Wang ◽  
...  
2015 ◽  
Vol 645-646 ◽  
pp. 1145-1149
Author(s):  
Jie Lin ◽  
Jian Lai Guo ◽  
Chang Liu ◽  
Hang Guo

A Cu doped V2O5film for lithium-ion batteries is prepared by magnetron sputtered using a vanadium target. Coppers are doped in varying proportions to investigate the effect of doping on the electrochemical properties. In comparison, the surface of doped samples is smooth and uniform. And the results of electrochemical tests indicate that the proper doped films (V: Cu=8: 1 by area) exhibit better cycle performance, wider voltage plateaus and higher capacity than other samples.


2020 ◽  
Vol 12 (9) ◽  
pp. 1278-1282
Author(s):  
Jun-Seok Park ◽  
Un-Gi Han ◽  
Gyu-Bong Cho ◽  
Hyo-Jun Ahn ◽  
Ki-Won Kim ◽  
...  

Li[NixCoyMnz]O2 (LiNCM) is one of the candidate cathode material that can replace the currently commercialized LiCoO2 (LCO) cathode material for lithium-ion batteries (LiBs). The morphological feature having primary particle and secondary sphere particle could affect structural stability, tap density and electrochemical performance of LiNCM. In this work, two LiNCM particles without or with the morphological collapse of the secondary particles were prepared by using a co-precipitation-assisted, solid-phase method and ball milling, and its morphological, structural and electrochemical characteristics were evaluated. The results of XRD, and FESEM demonstrated that the as-prepared two LiNCMs have a typical α-NaFeO2 layered structure and the two morphological features of secondary particles needed in this study. The results of electrochemical properties indicated that the LiNCM electrode without collapsed secondary particles have a good stability in cycle performance compared to that with collapse of secondary particles at 0.5, 1.0 and 2 C-rate. The capacity retention of without and with collapsed NCM was 55.8% and 27.3% after 200 cycles at 1 C-rate, respectively.


Sign in / Sign up

Export Citation Format

Share Document