Science of Advanced Materials
Latest Publications


TOTAL DOCUMENTS

2986
(FIVE YEARS 629)

H-INDEX

34
(FIVE YEARS 11)

Published By American Scientific Publishers

1947-2943, 1947-2935

2021 ◽  
Vol 13 (9) ◽  
pp. 1716-1723
Author(s):  
Jie Li ◽  
Chao Xu ◽  
Yueyue Lu ◽  
Yan Zhang ◽  
Xiaoping Tan

Nanoparticles are known to have recognition ability for targeted delivery, and are thus widely used in the treatments of diseases. Mesoporous nano-titanium dioxide (TiO2) nanoparticles have characteristics of nanomaterials and their porous structure with high surface area strengthens their drug-loading capacity and targeting ability. This study aimed to investigate the effect of mesoporous nano-TiO2 on pancreatic cancer cells and STAT pathway activity. Initially, we prepared mesoporous TiO2 nanoparticles that were characterized. Pancreatic cancer cells were co-cultured with mesoporous nano-TiO2 nanoparticles at different concentrations (0.1 μg/mL, 0.5 μg/mL, 1 μg/mL, 5 μg/mL, and 10 μg/mL) or 10 μg/mL nano-TiO2 (positive control group) or cells cultured alone (blank group). Cell viability was determined at several specific time points (24 h, 48 h, and 72 h). Transwell assay and scratching assay were conducted to determine the number of migrated and invaded cells. STAT3 and JAK2 expressions were examined by RT-qPCR and Western blot analysis. The prepared mesoporous nano-TiO2 exhibited sharp diffraction peaks with enhanced intensity and diffraction rings. STAT pathway was activated in pancreas cancer cells, which had more fluorescent cells than normal cells. The presence of mesoporous nano-TiO2 nanoparticles suppressed cancer cell viability and their inhibition rate increased with increased of nano-TiO2 concentration. The concentration of 10 μg/mL exhibited greatest inhibitory effect and 10 μg/mL mesoporous nano-TiO2 thus was chosen for experimental group. The width of the scratch in the experimental group (19.97±0.82 mm) was higher than in the blank group and positive control group (P < 0.05); 10 μg/mL mesoporous nano-TiO2 significantly decreased the number of invaded cells (71.97±17.84) and number of cell clones (156.91±31.03) (P < 0.05). The expression levels of STAT3 (0.41±0.06 μg/μL) and JAK2 (0.39±0.04 ug/ul) were diminished by treatment with mesoporous nano-TiO2. Mesoporous nano-TiO2 inhibits pancreatic cancer cell growth and STAT expression, as its inhibitory effect depends on its concentration. These findings might provide a novel insight into nanoparticle-based treatment for pancreatic cancer.


2021 ◽  
Vol 13 (9) ◽  
pp. 1812-1819
Author(s):  
Na-Na Yang ◽  
Hao-Rui Liu ◽  
Ning Mi ◽  
Qi Zhou ◽  
Li-Qun He ◽  
...  

Stereolithography (SLA)-manufactured parts behave with anisotropic properties due to the varying interface orientations generated by the layer-based manufacturing process. Part build orientation is a very important factor of anisotropic mechanical properties. In this paper, the build orientation experiment was designed to study the anisotropic behaviour of the mechanical properties of the SLA parts based on the orientation relationship between the force and the layer. The results show that there are obvious brittle characteristics on the fracture surface of the specimens and microcracks perpendicular to the direction of the layer distributed on the side of the fracture. The mechanical properties under brittle fracture have different degrees of sensitivity to the build orientation. Among all the build orientations, whether a specimen is built flat or on an edge shows obvious difference in tensile strength, and the relative range distribution reaches 35%. The changes in elastic modulus and the elongation at break are the most obvious in different angles relative to the XY plane, and the relative range distribution reaches 62% and 56% respectively. In all the build orientations designed, the tensile strength is the largest when it is placed on the edge at 0° with Y-axis in the XY plane, the elastic modulus is the largest when it was placed vertically, and the elongation at break is the largest when it is placed flat at 45° with Y-axis in the XY plane.


2021 ◽  
Vol 13 (9) ◽  
pp. 1691-1698
Author(s):  
Hongzhe Liu ◽  
Kai Tong ◽  
Ziyi Zhong ◽  
Gang Wang

To explore the effect of hydrogen sulfide (H2S) drug-loaded nanoparticles (H2S-NPs) on the mTOR/STAT3 signaling pathway in rats and its mechanism on repair of spinal cord injury (SCI), a new H2S-NP (G16MPG-ADT) was prepared and synthesized. The rats were selected as the research objects to explore the mechanism of SCI repair. The G16MPG-ADT NPs were evaluated by average particle size (APS), dispersion coefficient (DC), drug loading content (DLC), drug loading efficacy (DLE), in vitro release (IV-R), and acute toxicity (AT). It was found that G16MPG-ADT nanoparticles had a uniform particle size distribution with a unimodal distribution, with an average particle size of 186.5 nm and a dispersion coefficient of 0.129; within the concentration range of 8~56 μg/L, there was a good linear relationship with the peak area; and the release rate of the nanoparticles within 16 h~32 h was higher than 50%. G16MPG-ADT NP injection treatment was performed on rats with SCI. Western blotting (WB) and immunofluorescence staining were adopted to analyze the expression levels of mammalian target of rapamycin (mTOR) and signal transducers and activators of transcription (STAT3) protein and the growth of neurites. It was found that G16MPG-ADT can increase mTOR and STAT3 protein levels and promote nerve growth after SCI. Finally, the Basso, Beattie and Bresnahan locomotor rating (BBB) score was to evaluate the recovery effect of rats after treatment. It was found that the recovery effect was excellent after G16MPG-ADT treatment. In summary, G16MPG-ADT has a good effect on SCI repair in rats and can be promoted in the clinic.


2021 ◽  
Vol 13 (9) ◽  
pp. 1820-1824
Author(s):  
Jian-Chun Huo ◽  
Hai-Xia Yang ◽  
Yuan Ma ◽  
Jie Bai

Natural cotton fiber used for reinforcement is low-cost, environmentally friendly, good flexibility and easy to obtain. In this study, a new cotton fiber/silica aerogel composite was developed by sol–gel method via freezedrying. The obtained composite has excellent flexibility and can be restored to its original state after bending for 180° without obvious cracks. After 20 cycles continuous compression, the total unrecoverable strain loss is only 20% under strain of 60%. The composite also shows very prominent hydrophobicity, and the contact angle with water reaches 145 degrees. It has strong adsorption capacity for organic reagents and oil, with adsorption ratios of 500% and 600%, respectively. In addition, the composite has a low thermal conductivity of 0.038 W/(m·K) at room temperature. The obtained composite exhibits considerable promise in oil-water separation and thermal insulation.


2021 ◽  
Vol 13 (9) ◽  
pp. 1611-1621
Author(s):  
Rong Guo ◽  
Binbin Ma ◽  
Jiaqiu Nie

This study aimed to explore the value of preoperative mammography in the differential diagnosis of benign and malignant tumors of nipple discharge. A biocompatible T1 contrast agent KMnF3 nanoparticle was first developed in the research, and then RGD-coupled KMnF3 nanoparticles were further synthesized as a highly sensitive tumor-targeted magnetic resonance imaging (MRI) contrast agent. While the nanoparticle was characterized physically, cytotoxicity test and MRI test in breast cancer mice were performed, and the excised tumors were subjected to immunostaining and tumor electron microscope section processing. At the same time, 60 patients with nipple discharge were screened to participate in the research, and the prepared MRI nano contrast agent was used for the differential diagnosis of breast benign/malignant tumors of nipple discharge. In the experiment, the synthetic nanoparticles were tested by Fourier transformed infrared (FTIR), which proved that the designed RGDtu/KMnF3 nanoparticles were successfully synthesized. The quantitative analysis of the synthesized nanoparticles showed that the relaxation efficiency reached 23.12 mM−1s−1, and there was no obvious toxicity. After staining, the microscope showed that the tumor was proliferating. After intravenous injection of low-dose RGDtu/KMnF3 contrast agent, nanoparticles were found in the tumor tissue. It was found that the synthesized nanoparticles enhanced the contrast of tumors with a volume of less than 50 mm3 by observing tumor slices. The imaging of the patient’s breast showed that the X-ray classification of galactography based on this contrast agent was statistically significant in distinguishing benign/malignant lesions of nipple discharge (X2 = 58.700, P < 0.01).


2021 ◽  
Vol 13 (9) ◽  
pp. 1674-1684
Author(s):  
Yangfan Zhang ◽  
Yuanyuan Luo ◽  
Xinglei Wu ◽  
Liuqiong Yang ◽  
Dandan Cui ◽  
...  

Traditional computed tomography (CT) contrast agents, such as iodine-containing small molecules (omnipaque), have limitations in some applications. The development of nanotechnology has made it possible to develop CT contrast agents based on this technology. In this study, a large number of surface functional groups of the fifth-generation polyamide-amine dendrimer (P5-NH2) were applied to functionally modify polyethylene glycol (PEG), targeting molecules, or drugs, which were used as the carrier of CT contrast agents. With the help of sodium borohydride (NaBH4), there was a rapid reduction. The fluorescein thiocyanate (FT) and PEG modified with lactobionic acid (PEG-LA) weres connected before gold coating to obtain gold nanoparticles coated with targeted dendrimer (Au(P5-LA)DENPs). In the experiment, the gold nanoparticles were characterized, and the liver cancer nude mouse model was established, so as to analyze the CT imaging performance of the material. Besides, the above was applied in the motor function of children with cerebral palsy, and the improvement effect of CT imaging combined with transcranial magnetic stimulation based on the preparation of nanomaterials on the movement function of children was analyzed and demonstrated with the help of graph theory. The results showed that the average particle size of gold nanoparticles was 1.88 nm. Within the range of 5 °C–50 °C and pH = 4–7, the physical properties of the aqueous solution of this material were stable. What’s more, the cell activity still exceeded 80% when the material concentration reached 2000 nm. The nude mouse model of liver cancer indicated that the CT imaging based on this material enhanced the image contrast effect of the tumor part, and the material had no obvious toxic and side effects. CT imaging based on the preparation of nanomaterials can promote transcranial magnetic stimulation to accelerate the efficiency of brain movement, accelerate the global and local information exchange and integration speed of brain network, thereby improving the movement function of children.


2021 ◽  
Vol 13 (9) ◽  
pp. 1764-1770
Author(s):  
Yeonsik Choi ◽  
Jongchan Lee ◽  
Younghun Oh ◽  
Hyun Woo Lee ◽  
Kwang-Ho Kwon

In this work, we studied the etch characteristics and dielectric constant change of SiOC thin films by plasma etching for the fabrication of nanoscale devices to evaluate the C5H2F10 as alternative etching gas. We performed plasma etching of SiOC films with inductively coupled plasma using the CF4+X+O2 mixed gas, where X = CHF3 and C5H2F10. Plasma diagnosis such as optical emission spectroscopy and double Langmuir probe measurements were carried. We analyzed the chemical compositions of residues on the etched SiOC film surface using X-ray photoelectron spectroscopy. After the process, contact resistance was measured using the transmission line method to analyze the degree of polymer on the surface of the silicon. Ellipsometry were used to evaluate the change in the dielectric constant of the thin film due to plasma exposure. It was confirmed that the etched profile was more vertical than that of the CHF3 gas plasma, and the increase in the dielectric constant of the SiOC thin film by C5H2F10 gas plasma is less than that of CHF3 gas plasma. These results confirmed that C5H2F10 gas was a powerful alternative to CHF3 gas in semiconductor processing for the fabrication of nanoscale devices.


2021 ◽  
Vol 13 (9) ◽  
pp. 1595-1602
Author(s):  
Yuli Wu ◽  
Junwei Song ◽  
Shengcui Liu ◽  
Xianglei Wei ◽  
Weiwei Chen

This study aimed to explore the application of super paramagnetic gold magnetic nanoparticles (Au-M-NPs) in the magnetic resonance imaging (MRI) images for targeted diagnosis and treatment of breast cancer. The reducibility of ethylene glycol to ferric chloride (FeCl3) was adopted to synthesize the Au-M-NPs by solvothermal method by taking acetic acid as the base source and trisodium citrate as the stabilizer. Besides, the synthesized Au-M-NPs were applied in the MRI images for targeted therapy of breast cancer. Patients from a blank group (group A), a control group (group B), and an experimental group (group C) received the traditional clinical diagnosis treatment, MRI diagnosis, and Au-M-NPs targeted therapy with MRI in turn. The results showed that the prepared Au-M-NPs were featured with small particle size and good dispersibility, and were monodispersive after surface modification. The intraoperative blood loss of patients from group A (115.3±9.33 mL) and group B (94.6±9.72 mL) was obviously higher than the loss of group C (68.4±8.7 mL) (P < 0.05). The drainage volume of patients from group B (162.4±12.3 mL) and group C (131.9±11.8 mL) decreased sharply after surgery compared with group A (193.7±11.8 mL), and that in group C was the lowest (P < 0.05). The proportion of local recurrence in patients from group B (12.3%) and group C (6.4%) dropped steeply in contrast to the proportion of group A (13.2%) (P < 0.05). The proportion of tumor metastasis in patients from group B (11.2%) and group C (8.4%) was greatly lower than that of group A (14.8%) (P < 0.05). In conclusion, the application of Au-M-NPs in the diagnosis and treatment of breast cancer with MRI could effectively reduce the incidence of intraoperative and postoperative adverse reactions.


2021 ◽  
Vol 13 (9) ◽  
pp. 1732-1738
Author(s):  
Ahmad Umar ◽  
Ramesh Kumar ◽  
Rajesh Kumar ◽  
Ahmed A. Ibrahim ◽  
Mohsen A. M. Alhamami ◽  
...  

Co-doped ZnO nano-agglomerates were synthesized by a facile solution process. Several characterization techniques revealed the successful doping of the ZnO by Co ions. FESEM results showed the agglomeration of the Co-doped ZnO nanoparticles to form large-sized nano-agglomerates. The diameters of the spherical nanoparticles and the agglomerates were not found to be uniform. The diameters of the nano-agglomerates ranged from ~25 nm–120 nm. XRD spectrum confirmed the Wurtzite hexagonal phase of ZnO in Co-doped ZnO nanoagglomerates. The average particle size for Co-doped ZnO nano-agglomerates was 20.68 nm. The sensing parameters were examined by using Co-doped ZnO nano-agglomerates modified gold electrode through cyclic voltammetric and amperometric analysis. The sensitivity of 70.73 μAmM−1cm−2 and very low-detection limit of 0.2 μM was observed for H2O2. The corresponding linear dynamic concentration range was 0.2–1633 μM. The excellent sensing activities of the Co-doped ZnO nano-agglomerates for H2O2 were attributed to the improved intrinsic electric properties and increased inner defects density, particularly near the interface region.


2021 ◽  
Vol 13 (9) ◽  
pp. 1637-1643
Author(s):  
Zhenxi Cai

Nasopharyngeal carcinoma, a type of malignant tumor of the head and neck region, has strong resistance to anticancer drugs, which seriously hinders clinical treatment. In this study, we investigated the effects of different concentrations of paclitaxel-containing nano-apoliposomes on cisplatin (DDP)-resistant nasopharyngeal carcinoma cells in vitro, referred to as CNE1/DDP and CNE2/DDP. Cell behaviors were then analyzed, including proliferation, migration, and invasion abilities. In addition, levels of proteins related to apoptosis and the epithelial-mesenchymal transition (EMT) were analyzed using western blot assays and mRNA levels of EMT-related genes were measured using qRT-PCR. Our results demonstrated that paclitaxel-containing nano-apoliposomes decrease proliferation, migration, invasion, and EMT of CNE1/DDP and CNE2/DDP cells, demonstrating their inhibitory effects on cisplatin-resistant nasopharyngeal carcinoma cells. This work demonstrates the potential value of paclitaxe-containing nano-apoliposomes in the clinical treatment of drug-resistant nasopharyngeal carcinoma.


Sign in / Sign up

Export Citation Format

Share Document